LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Automated Liquid Biopsy Test Predicts Early Disease Progression and Survival in Advanced Breast Cancer Patients

By LabMedica International staff writers
Posted on 14 Jun 2023
Print article
Image: Study co-author Mary Jo Fackler, Ph.D., analyzes patient plasma samples (Photo courtesy of Madison Pleas)
Image: Study co-author Mary Jo Fackler, Ph.D., analyzes patient plasma samples (Photo courtesy of Madison Pleas)

There is a pressing need for predictive clinical biomarkers to identify early disease progression in women with metastatic breast cancer, considering its heterogeneous nature. Such biomarkers could aid oncologists in reducing the adverse impacts on patients’ quality of life from drug combinations by optimizing the deployment of available and effective therapies. Now, a novel, automated liquid biopsy test can predict early disease progression and potential survival in patients with metastatic breast cancer in one month after commencing treatment.

The Liquid Biopsy for Breast Cancer Methylation (LBx-BCM) assay, currently under development by researchers at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA), is a prototype for research use only at this stage. The assay is compatible with the GeneXpert molecular testing platform and requires less than 15 minutes of hands-on time by a lab technician. The assay is capable of detecting methylation in nine genes, which are known to be altered in the four breast cancer subtypes: AKR1B1, TM6SF1, ZNF671, TMEFF2, COL6A2, HIST1H3C, RASGRF2, HOXB4, and RASSF1, in under five hours. Methylation, a chemical tag associated with cancer development and progression, can deactivate tumor suppressor genes.

In a study, the LBx-BCM assay identified cancer DNA in one or more of nine commonly altered genes in breast cancers from blood samples of women undergoing breast cancer treatment. Patients with high cumulative methylation levels four weeks into treatment experienced significantly shorter progression-free survival periods (time during which the disease does not advance) and worse overall survival compared to those with low cumulative methylation. Researchers used the week-four cumulative methylation levels to develop and evaluate a new model for predicting disease progression as early as three months after initiating treatment. Future research objectives include studying weekly methylation patterns after starting treatment to determine the best time for measuring cumulative methylation, and refining and validating the model in similar patient populations and those with early-stage disease.

“It looks promising that we can detect methylation in the first four weeks of treatment,” said lead study author Kala Visvanathan, M.D., M.H.S., director of the Cancer Genetics and Prevention Service at the Johns Hopkins Kimmel Cancer Center. “Currently, we wait until we see symptomatic or clinical changes, usually within three months, before adjusting treatments. If we could detect changes earlier, we could adjust treatments earlier, if necessary, with the goal of achieving better clinical outcomes and prolonging survival.”

Related Links:
Johns Hopkins Medicine 

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Coagulation Analyzer
CS-2400

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.