LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Self-Supervised AI Improves Diagnostic Accuracy for Melanoma with Low Pathologist Agreement

By LabMedica International staff writers
Posted on 09 Nov 2022
Print article
Image: Study results on new artificial intelligence predicts diagnostic concordance for melanoma (Photo courtesy of Proscia)
Image: Study results on new artificial intelligence predicts diagnostic concordance for melanoma (Photo courtesy of Proscia)

Study results on new artificial intelligence (AI) that predicts diagnostic agreement for melanoma highlight the potential of the technology to improve diagnostic accuracy for this deadliest form of skin cancer and other diseases with low pathologist concordance.

Proscia’s (Philadelphia, PA, USA) retrospective study “Using Whole Slide Image Representations from Self-Supervised Contrastive Learning for Melanoma Concordance Regression” demonstrated the AI’s performance on 1,412 whole slide images of skin biopsies. Each image was assessed by three to five dermatopathologists to establish a concordance rate. The R2 correlation between the technology’s predictions and the dermatopathologists’ concordance rates was 0.51. Proscia’s research also indicates that the same AI could be extended to other diagnoses that demonstrate low pathologist agreement. This includes breast cancer staging as well as Gleason grading of prostate cancer, which is used to evaluate the aggressiveness of the disease. Both often play an important role in informing treatment decisions.

In addition to this study, Proscia plans to conduct additional research illustrating the potential benefits of AI in helping pathologists to diagnose melanoma, including:

  • Lowering the misdiagnosis rate for difficult cases. Melanoma often presents like benign mimickers, causing pathologists to disagree on its diagnosis 40% of the time. As cases are often evaluated by only one pathologist, AI that predicts concordance with multiple experts could help to improve diagnostic accuracy by serving as a second set of eyes.
  • Accelerating turnaround times for critical results. Over 15 million skin biopsies are taken annually in the U.S., each of which may display one of hundreds of diagnoses. AI that predicts diagnostic agreement could flag cases that were likely to be challenging, driving efficiency gains by suggesting additional testing to provide a more complete look prior to pathologist review.
  • Reducing costs and distress for patients. Frequent over-diagnosis of melanoma not only results in additional costs for health systems but also leads patients to pay for unnecessary treatment and cope with the stress of believing they have a life-threatening disease. Increased diagnostic accuracy could help to eliminate these burdens.

“With this study, we have laid the groundwork for a new use case of AI in pathology that could have a tremendous impact on patient outcomes,” said Sean Grullon, Proscia’s Lead AI Scientist and lead author of the study. “Our technology relies on self-supervised learning to recognize incredibly subtle patterns, demonstrating the power of one of the most advanced approaches in AI.”

Related Links:
Proscia 

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.