LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Link Identified Between Mitochondria and Pancreatic Cancer Risk

By LabMedica International staff writers
Posted on 18 Oct 2022
Print article
Image: The T100 thermal cycler is a small thermal cycler offering a comprehensive set of convenient features in a small footprint (Photo courtesy of Bio-Rad)
Image: The T100 thermal cycler is a small thermal cycler offering a comprehensive set of convenient features in a small footprint (Photo courtesy of Bio-Rad)

Tumors invariably rewire their metabolism to promote cellular plasticity, adapt to ever-changing nutrient availability and acquire traits of aggressive disease, including metastatic competence. Cancer metabolism has long been equated with the preferential utilization of glycolysis by tumor cells even when oxygen is present.

Although mechanisms of mitochondrial reprogramming in cancer have recently come into better focus, the role of organelle fitness in this process has not been widely considered. In fact, the microenvironment of tumor growth is highly unfavorable to mitochondria, as erratic oxygen concentrations and oxidative radicals can compromise organelle integrity, deregulate multiple mitochondrial functions, and activate cell death.

A multidisciplinary international team of scientist led by The Wistar Institute (Philadelphia, PA, USA) examined primary patient samples with histologically confirmed diagnosis of normal brain parenchyma (tumor-free surgical margins, N = 5), low grade gliomas (LGG, N = 4, oligodendroglioma, astrocytoma) and glioblastoma (GBM, N = 6) for differential expression of the Mic60-low gene signature by qPCR. Four μm-thick sections from tissue blocks of human pancreatic ductal adenocarcinoma (PDAC) tissue samples were stained with a primary antibody to Mic60 (BD Biosciences, San Jose, CA, USA) using Benchmark Ultra Roche Ventana Immunostainer (Roche Group, Tucson, AZ, USA) and diaminobenzidine (DAB) as a chromogen. All slides were counterstained with hematoxylin.

Human PDAC cell lines PANC-1 and CAPAN-2 were transfected with control non-targeting siRNA or Mic60-directed siRNA. Transfected PANC-1 and CAPAN-2 cells were harvested and RNA was immediately extracted. Reverse-transcription reaction performed on a Bio-Rad T100 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). Quantitative PCR was performed with SYBR Select Master Mix on ABI Quant Studio 5 machine (Thermo Fisher Scientific, Waltham MA, USA). As discovery dataset, log2-transformed mRNA expression values were downloaded from 33 tumor samples in The Cancer Genome Atlas (TCGA) database of the UCSC Xena browser.

The investigators showed that showed that an 11-gene Mic60-low signature is associated with aggressive disease, local inflammation, treatment failure, and shortened survival, ultimately demonstrating the clinical relevance of protein. expression of the Mic60-low gene signature in the TCGA dataset of PDAC was associated with shortened overall survival (HR = 1.87, N = 176), disease-specific survival (HR = 1.73), Therefore, the Mic60-low gene signature may be used as a simple tool or biomarker to estimate cancer risk for PDAC and potentially other types of cancer, including glioblastoma.

Dario C. Altieri, MD, a Professor of Immunology and a senior author of the study, said, “To the best of our knowledge, this is the first time that a gene signature of mitochondrial dysfunction is linked to aggressive cancer subtypes, treatment resistance and, unfortunately low patient survival rates. Although our work has focused on the mitochondrial protein Mic60 in this response, we know that dysfunctional mitochondria are commonly generated during tumor growth, suggesting that this is a general trait in cancer.”

The authors concluded that based on their findings, the Mic60-low gene signature may provide an easily accessible, point-of-service molecular tool to stratify patient risk in PDAC and potentially other malignancies, including GBM. The study was published on October 12 2022 in the journal PLOS ONE.

Related Links:
The Wistar Institute
BD Biosciences
Roche Group
Bio-Rad Laboratories
Thermo Fisher Scientific 

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.