LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Pan-Cancer Analysis of Tumor Mutations Points to Predictive Biomarkers

By LabMedica International staff writers
Posted on 05 Jul 2022
Print article
Image: Photomicrograph of histology stained preparation showing a non-small cell lung carcinoma (Photo courtesy of Wikipedia/Librepath)
Image: Photomicrograph of histology stained preparation showing a non-small cell lung carcinoma (Photo courtesy of Wikipedia/Librepath)

Quantifying the effectiveness of different cancer therapies in patients with specific tumor mutations is critical for improving patient outcomes and advancing precision medicine. A key goal of precision medicine is to characterize how patients with specific genetic mutations respond to therapies.

Advances in modeling mutation–treatment interactions can potentially improve patient outcomes by recommending promising treatments based on each patient’s distinct tumor mutation profile. These interactions are especially important for guiding therapies for cancer, which is driven by heterogeneous mutations.

Biomedical Scientists at Stanford University (Stanford, CA, USA) and their colleagues used a gene-level analytical strategy, and searched for ties between tumor mutation profiles, cancer treatment histories, and survival patterns. Their dataset included electronic health record (EHR) entries and targeted Foundation Medicine panel sequence profiles for hundreds of cancer-related genes in more than 40,900 de-identified cancer patients who are part of the Flatiron Health-Foundation Medicine (New York, NY, USA) clinicogenomic database.

The participants included more than 12,900 individuals with advanced non-small cell lung cancer (NSCLC), nearly 7,900 metastatic breast cancer patients, almost 3,900 individuals with ovarian cancer, some 3,500 patients with metastatic pancreatic cancer, and thousands more patients with advanced bladder cancer, renal cell carcinoma, or melanoma. The team explained, noting that the results were verified using data for nearly 3,900 additional advanced lung, breast, or colorectal cancer cases from an American Association for Cancer Research (Philadelphia, PA, USA) dataset.

The team flagged 458 apparent mutation markers for survival in cancer patients receiving specific treatment protocols and uncovered specific mutations that typically co-occur with other tumor alterations. The investigators found that mutations in 42 genes tracked with survival outcomes in at least one of the cancer types considered, for example. These genes, in turn, showed almost 100 significant interactions.

Consistent with past studies that showed ties between EGFR inhibitor resistance and KRAS mutations in advanced NSCLCs, they saw shorter-than-usual survival for KRAS-mutated cases treated with EGFR inhibitors and enhanced survival in EGFR inhibitor-treated advanced NSCLC patients with KRAS-wild type tumors. When the team looked at mutation-mutation interactions across genes such as ALK, BRAF, EGFR, MET, RET, ROS1, ERBB2, or PIK3CA that are currently targeted by FDA-approved treatments, it found genes that were more or less likely to be mutated in conjunction with alterations affecting the targeted genes.

The authors concluded that their findings demonstrate that high-quality, real-world clinicogenomic data from patients with cancer can be an important resource for investigating such mutation-treatment interactions by capturing outcome information of patients on diverse treatments. As tumor sequencing data become increasingly linked to the EHR, such data combined with careful computational analysis can greatly benefit precision medicine. The study was published on June 30, 2022 in the journal Nature Medicine.

Related Links:
Stanford University 
Flatiron Health-Foundation Medicine 
American Association for Cancer Research 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.