We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biochemical Abnormalities Among Celiac Disease Patients Referred for Antibody Testing

By LabMedica International staff writers
Posted on 09 May 2022
Print article
Image: The Phadia 250 Immunoassay Analyzer, in addition to allergy testing, allows measurement of autoantibodies of more than 20 autoimmune related diseases using the EliA product line (Photo courtesy of Thermo Fisher Scientific)
Image: The Phadia 250 Immunoassay Analyzer, in addition to allergy testing, allows measurement of autoantibodies of more than 20 autoimmune related diseases using the EliA product line (Photo courtesy of Thermo Fisher Scientific)

Celiac disease (CD) is a chronic disease occurring in all age groups and affecting approximately 1% of the population, although many cases of CD remain undiagnosed. This condition is caused by an abnormal immune response in genetically susceptible individuals triggered by the ingestion of gluten proteins from wheat, rye and barley.

Celiac disease primarily affects the small intestine, often leading to malabsorption and micronutrient deficiencies. A small intestinal biopsy with recognition of villus atrophy and inflammation has been the gold standard for diagnosis; however, serological testing is increasingly used in the diagnostic process and screening for CD, mainly by the detection of CD-specific antibodies.

Clinical Scientists at the Copenhagen University Hospital (Copenhagen, Denmark) and their colleagues included in an observational cohort study 706 individuals that had received a positive CD antibody result; 72.7% were women and the mean age was 26 years. The team compared the results of those with CD-positive antibodies with individuals with CD-negative antibodies.

Tissue transglutaminase antibody (IgA) (TTG-IgA), tissue transglutaminase antibody (IgG) (TTG-IgG), deamidated gliadin peptide antibody (IgA) (DGP-IgA) and deamidated gliadin peptide antibody (IgG) (DGP-IgG) were measured in serum by fluorescence enzyme immunoassay (EIA) on the UniCAP 100 and ImmunoCAP 250 platforms (Phadia Laboratory Systems, Thermo Fisher Scientific, Hvidovre, Denmark).

Other variables used from the CopLab database were hemoglobin, erythrocytes, mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), transferrin, hematocrit, ferritin, alanine transaminase (ALAT), alkaline phosphate, 25-OH vitamin D, folic acid, cobalamin, C-reactive protein (CRP), reticulocyte, mean corpuscular hemoglobin (ReticMCH), erythrocyte volume, relative distribution width (RDW), and immunoglobulin A.

The investigators reported a most remarkable difference between the groups was the markedly lower ferritin among CD antibody-positive individuals compared with CD antibody-negative individuals (women: 13.8 µg/L versus. 35.9 µg/L; men: 34.3 µg/L versus 80.4 µg/L), Also, CD antibody-positive individuals had a tendency for lower hemoglobin (women: 7.8 mmol/L versus 8.1 mmol/L; men: 8.5 mmol/L versus 8.8 mmol/L). The team reported lower cobalamin and folic acid levels and higher levels of transferrin, alanine transaminase and alkaline phosphate among CD antibody-positive individuals.

Compared with CD-negative individuals, the scientists reported that a greater proportion of tests among CD antibody-positive individuals exhibited hemoglobin (10.2% versus 2.7%), mean corpuscular volume (7.1% versus 2.9%), mean corpuscular hemoglobin concentration (6.8% versus 1.2%) and ferritin (37.6% versus7.6%) below the reference level, while transferrin (20.7% versus 9.5%) was above the reference interval. CD antibody-positive individuals were also more likely to have a deficiency for cobalamin and folic acid.

Line Lund Kårhus, MD, PhD, the lead author of the study, said, “This study identified several biochemical abnormalities associated with celiac disease (CD) antibody positivity in a primary care setting among individuals referred to CD antibody testing. The pattern of abnormalities suggested that micronutrient deficiencies were prevalent among CD antibody-positive individuals.”

The authors concluded that their study showed more measurements below the reference interval for hemoglobin, MCV, MCHC, ferritin, cobalamin and folic acid among the individuals with a positive CD antibody test. The pattern of the included biomarkers suggested that micronutrient deficiencies were common among CD antibody-positive individuals and confirmed malabsorption as a sign of CD. The study was published on April 18, 2022 in the journal Scientific Reports.

Related Links:
Copenhagen University Hospital 
Phadia Laboratory Systems 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.