Clinical Application of Leukocyte Counts Based on Targeted DNA Methylation Analysis
|
By LabMedica International staff writers Posted on 14 Mar 2022 |

Leukocyte subsets are usually quantified with automated cell counting devices and particularly for stratification of lymphocyte subsets with flow cytometry. Despite broad application, conventional methods have several limitations.
DNA methylation (DNAm) is a covalent modification of cytosine residues, mostly at CG dinucleotides (CpG sites). By measuring the methylation level at CpG sites with cell-type–specific hypo- or hypermethylation, it is possible to quantify the composition of leukocyte subsets using statistical algorithms (deconvolution models).
Biomedical Engineers at the RWTH Aachen University (Aachen, Germany) and colleagues optimized and validated targeted DNAm assays for leukocyte deconvolution using 332 venous and 122 capillary blood samples from healthy donors. In addition, they tested 36 samples from ring trials and venous blood from 266 patients diagnosed with different hematological diseases. Deconvolution of cell types was determined with various models using DNAm values obtained by pyrosequencing or digital droplet PCR (ddPCR).
DNA was isolated from 150 µL venous or 50 µL capillary blood and bisulfite-treated with the EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA). PCR amplicons were sequenced on a PyroMark Q96 ID (Qiagen, Hilden, Germany) and analyzed with Qiagen’s PyroMark Q96 CpG 1.0.9. Digital Droplet Polymerase Chain Reaction (ddPCR) was carried out with the QX200 Droplet Digital reader (Bio-Rad, Hercules, CA, USA). Absolute leukocyte quantification by pyrosequencing was also performed.
The investigators reported that relative leukocyte quantification correlated with conventional blood counts for granulocytes, lymphocytes, B cells, T cells (CD4 or CD8), natural killer cells, and monocytes with pyrosequencing and ddPCR measurements. In some patients, particularly with hematopoietic malignancies, they observed outliers in epigenetic leukocyte counts, which could be discerned if relative proportions of leukocyte subsets did not sum up to 100%. Furthermore, absolute quantification was obtained by spiking blood samples with a reference plasmid of known copy number. The results confirmed cell-type–specific hypomethylation in the genes WDR20, CD4, CD8A, WIPI2, SLC15A4, and CENPA, which was more pronounced compared to the Illumina BeadChip data or reverse nonnegative least square (NNLS) estimation.
The authors concluded that targeted DNAm analysis by pyrosequencing or ddPCR is a valid alternative to quantify leukocyte subsets, but some assays require further optimization. The study was published on February 14, 2022 in the journal Clinical Chemistry.
Related Links:
RWTH Aachen University
Zymo Research
Qiagen
Bio-Rad
Latest Technology News
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








