We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Stem Cell Architecture Drives Myelodysplastic Syndrome Progression

By LabMedica International staff writers
Posted on 10 May 2022
Print article
Image: The BD LSR Fortessa X-20 is a premium flow cytometer that brings endless possibilities to multicolor cell analysis (Photo courtesy of BD Biosciences)
Image: The BD LSR Fortessa X-20 is a premium flow cytometer that brings endless possibilities to multicolor cell analysis (Photo courtesy of BD Biosciences)

Myelodysplastic syndromes are a group of diseases in which the bone marrow doesn’t produce enough healthy blood cells. The diseases originate from cells known as hematopoietic stem cells (HSCs) that can persevere and even grow during standard-of-care treatment with hypomethylating agents (HMAs).

Advances in sequencing technologies have provided insights into the genetic mechanisms that contribute to the progression of MDS to secondary acute myeloid leukemia (sAML). Aberrant MDS cells that reside in the immunophenotypically defined HSC compartment are the source of disease progression, but how these cells contribute to therapy failure and disease evolution remains largely unknown.

A large team of hematologists specializing in leukemia at The University of Texas MD Anderson Cancer Center (Houston, TX, USA) analyzed more than 400 samples from patients with MDS taken at different stages of disease. They used integrative molecular profiling of HSCs, and found that HMAs eliminated mature cancer cells, but left the stem cells alive, leading to disease relapse.

Quantitative flow cytometric analyses and FACS of human live mononuclear cells (MNCs) and CD34+ cells were performed using standard staining protocols for established antigen panels and antibodies. Samples used for flow cytometry and FACS were acquired with a BD LSR Fortessa or BD Influx Cell Sorter (BD Biosciences, San Jose, CA, USA). During treatment, peripheral blood (PB) samples were periodically collected in EDTA-coated tubes, and complete blood counts were performed with an automated ABX Pentra Hematology Analyzer (Horiba, Northampton, UK). Total DNA from BM mononuclear cells (MNCs), neutrophils and T cells was also extracted and processed.

Comparing bone marrow samples from untreated patients to those of healthy donors revealed that MDS samples could be divided into two groups based on the profile of those stem cells. The samples from one of the MDS groups had an abnormal pattern of increased frequency of common myeloid progenitors (CMP) within the myeloid hematopoietic progenitor cell compartment. The other MDS group had an increased frequency of granulocytic-monocytic progenitors (GMP) within the compartment. In both groups, the stem cell populations sustained the disease during treatment and expanded after HMA therapy failure, thus driving disease progression.

The expansions of each of these MDS stem cell types depended on activation of specific signaling pathways unique to each group: the BCL2 survival pathway in the CMP group and NF-κB signaling in the GMP group. Patients with CMP pattern MDS had a shorter time to achieve complete remission relative to those with the GMP pattern (1.2 months versus 6.5 months) and a longer relapse-free survival duration (16.3 months versus 5.2 months). Together, these findings suggest that CMP pattern MDS patients with blast progression can benefit from treatment with the highly selective BCL2 inhibitor venetoclax.

Simona Colla, PhD, associate professor of Leukemia and senior author of the study, said, “The majority of MDS cases do not respond to current therapies or relapse. This study provides new insight into what causes therapy failure and disease progression in MDS and possibly provides targeted treatment options for these patients.”

The authors concluded that the data suggest that the cellular architecture of MDS should be considered as a biomarker for predicting the intrinsic vulnerabilities of the cells that expand at relapse and thus for guiding the design or choice of specific therapeutic approaches targeting these cells, particularly in the setting of venetoclax-based therapy. The study was published on March 3 2022 in the journal Nature Medicine.

Related Links:
The University of Texas MD Anderson Cancer Center
BD Biosciences 
Horiba

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.