We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Epigenetic Biomarkers Increase Sensitivity of Prostate Cancer Liquid Biopsy Diagnostic Tests

By LabMedica International staff writers
Posted on 31 Jan 2022
Print article
Image: Micrograph of prostate adenocarcinoma, acinar type, the most common type of prostate cancer (Photo courtesy of Wikimedia Commons)
Image: Micrograph of prostate adenocarcinoma, acinar type, the most common type of prostate cancer (Photo courtesy of Wikimedia Commons)
A team of Austrian researchers identified additional epigenetic biomarkers that will upgrade the diagnosis of advanced prostate cancer by increasing the sensitivity of liquid biopsy analysis of circulating tumor DNA.

Liquid biopsy analysis of circulating cell-free DNA (cfDNA) from peripheral blood has emerged as a valuable diagnostic tool in oncology, since sample collection is quick and minimally invasive. In cancer patients, cfDNA consists in part of cancer-derived circulating tumor DNA (ctDNA), and it has been shown that tumor-related genetic and epigenetic alterations can be detected by analyzing cfDNA in cancer patients. Epigenetic tumor-specific changes including DNA methylation are measurable in ctDNA, and their potential as diagnostic, prognostic, and predictive epigenetic biomarkers has been demonstrated in a large number of studies.

For the current study, investigators at the Medical University of Vienna (Austria) evaluated the suitability of DNA methylation-based biomarkers for non-invasive prostate cancer (PCa) diagnostics.

Based on experiments and in silico analyses they identified two DNA methylation signatures of three genes each, which could be used as minimal-invasive markers in liquid biopsies for the detection of methylated ctDNA. These signatures allowed for the classification of mCRPC (metastatic castration resistant PCa) with high specificity and sensitivity and were able to distinguish responders from non-responders following different treatment procedures.

In addition, DNA methylation of three genes, aldose reductase (AKR1B1), Krueppel-like factor 8 (KLF8), and lipid droplet associated hydrolase (LDAH) was used to monitor the therapeutic response of patients to chemotherapy and anti-androgen therapy. Increased DNA methylation of marker genes was also associated with a poorer prognosis and shorter patient survival.

The investigators said that as a next step, it will be important to test the performance of their methylation markers in prospective clinical trials including mCRPC patients undergoing different treatment regimes.

The study was published in the January 4, 2022, online edition of the journal Molecular Cancer.

Related Links:
Medical University of Vienna

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.