LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Hematologic Complications with Age in Shwachman-Diamond Syndrome

By LabMedica International staff writers
Posted on 24 Jan 2022
Print article
Image: Bone marrow biopsy from a patient with severe Shwachman-Diamond Syndrome, hypocellular marrow; scattered mild dysplastic changes in all cell lines; may have prominent hematogones (Photo courtesy of Dragos C. Luca, MD)
Image: Bone marrow biopsy from a patient with severe Shwachman-Diamond Syndrome, hypocellular marrow; scattered mild dysplastic changes in all cell lines; may have prominent hematogones (Photo courtesy of Dragos C. Luca, MD)
Shwachman-Diamond syndrome (SDS) is a rare, inherited bone marrow failure, characterized by a low number of white blood cells, poor growth due to difficulty absorbing food, exocrine pancreatic dysfunction, and, in some cases, skeletal abnormalities.

Children with SDS have a small but significant chance of developing blood disorders such as myelodysplastic syndrome (MDS) or leukemia. Nearly 5% of children with the condition will develop leukemia, with the risk rising to 25 % by adulthood. In addition, recurring infections, including pneumonia, ear, and skin infections, are common.

A large team of medical scientists led by those at Harvard Medical School (Boston, MA, USA) conducted a cohort study of 153 subjects from 143 families with confirmed biallelic SBDS mutations enrolled on the North American Shwachman Diamond Registry or Bone Marrow Failure Registry. The team collected longitudinal complete blood counts (CBCs). CBCs were included until the time of myelodysplasia (MDS) or leukemia diagnosis or until the time of hematopoietic stem cell transplant (HSCT), when applicable.

Hemoglobin values were excluded during periods of red cell transfusions, platelet values were excluded during platelet transfusions, and absolute neutrophil counts (ANCs) were excluded while on granulocyte colony-stimulating factor (G-CSF). Local bone marrow aspirate and biopsy reports were examined for reported cellularity (from biopsies), fluorescence in situ hybridization, karyotype, and flow cytometry data. Surveillance bone marrows were defined as bone marrow examinations performed in the absence of clinical symptoms.

The investigators reported that 153 individuals (143 families) with biallelic SBDS mutations, including several short case descriptions illustrating the diversity of phenotypes in SDS. Ninety-two were male (60.1%). Median age at last follow-up was 10.4 years (range, 0.3-52.8). The cohort included 39 adults (25.5%) who were >18 years of age at the follow-up. The SBDS c.258 + 2T>C variant was present in all but one patient.

The team evaluated the association between blood counts and age, 2,146 blood counts were analyzed for 119 subjects. Absolute neutrophil counts were positively associated with age. Hemoglobin was also positively associated with age up to 18 years, but the association was negative thereafter. Platelet counts and marrow cellularity were negatively associated with age. Marrow cellularity did not correlate with blood counts. Severe marrow failure necessitating transplant developed in eight subjects at a median age of 1.7 years (range, 0.4-39.5), with 7/8 requiring transplant prior to age 8 years. Twenty-six subjects (17%) developed a myeloid malignancy (16 myelodysplasia and 10 acute myeloid leukemia) at a median age of 12.3 years (range, 0.5-45.0) and 28.4 years (range, 14.4-47.3), respectively.

The authors concluded that their study found that, although marrow cellularity decreased with age, as expected for a genetic bone marrow failure (BMF) condition, blood counts unexpectedly improved with age. Severe BMF was observed in early childhood, whereas myeloid malignancy was observed in later childhood/early adulthood. The study was published on January 11, 2022 in the journal Blood Advances.

Related Links:
Harvard Medical School

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.