Seasonal Temperature Impacts Patients’ Laboratory Results
By LabMedica International staff writers Posted on 23 Dec 2021 |

Image: Schematic graphics showing how variation in common laboratory test results caused by ambient temperature (Photo courtesy of Cell Press)
Every year, 13 billion laboratory tests are performed in the USA, nearly 800 million in the UK, and many more worldwide. Test results provide critical data on clinically important changes in patient physiology.
These test including acute variations in plasma volume, body temperature, circadian rhythms, but can also vary for more idiosyncratic reasons from one phlebotomy to the next, like differences in technique or sample processing. The effect of ambient temperature on the day blood is drawn has been explored.
Health scientists at the University of California, Berkeley (Berkeley, CA, USA) and from the University of Chicago (Chicago, IL, USA) analyzed a large dataset of test results from 2009 to 2015, spanning several climate zones. In a sample of more than four million patients, they modeled more than two million test results as a function of temperature. They measured how day-to-day temperature fluctuations affected results, over and above the patients’ average values, and seasonal variation. In the dataset were 4,877,039 individuals who had laboratory result data. Daily temperature ranges from a low of −28 °C (Fairbanks, AK, USA; February 16, 2011) to 49 °C (Yuma, AZ, USA; July 23, 2014).
The investigators reported that the results showed that temperature affected more than 90% of individual tests and 51 of 75 assays, are significantly affected by temperature, including measures of kidney function (increased creatinine, urea nitrogen, and urine specific gravity), cellular blood components (decreased neutrophils, erythrocytes, and platelets), and lipids (increased high-density lipoprotein [HDL] and decreased total cholesterol, triglycerides, and low-density lipoprotein [LDL]). These small, day-to-day fluctuations did not likely reflect long-term physiological trends. For example, lipid panels checked on cooler days appeared to suggest a lower cardiovascular risk, leading to almost 10% fewer prescriptions for cholesterol-lowering drugs called statins to patients tested on the coolest days compared to the warmest days, even though these results probably did not reflect stable changes in cardiovascular risk.
One practical implication of the study is that laboratories could statistically adjust for ambient temperature on the test day when reporting laboratory results. Doing so could reduce weather-related variability at a lower cost than new laboratory assay technology or investments in temperature control in transport vans. In practice, decisions on adjustment would need to be at the discretion of the laboratory staff and the treating physician, potentially on a case-by-case basis.
Ziad Obermeyer, MD is the Distinguished Associate Professor of Health Policy and Management and first author of the study, said, “The textbook way of thinking about medical investigation is bench to bedside. First, we come up with a hypothesis, based on theory, then we test it with data. As more and more big data comes online, like the massive dataset of laboratory tests we used, we can flip that process on its head: discover fascinating new patterns and then use bench science to get to the bottom of it. I think this bedside-to-bench model is just as important as its better-known cousin because it can open up totally new questions in human physiology.”
The authors concluded that ambient temperature affects the results of many laboratory tests. These distortions, in turn, affect medical decision-making. Statistical adjustment in reporting is feasible and could limit undesired temperature-driven variability. The study was published on December 10, 2021 in the new journal MED.
Related Links:
University of California, Berkeley
University of Chicago
These test including acute variations in plasma volume, body temperature, circadian rhythms, but can also vary for more idiosyncratic reasons from one phlebotomy to the next, like differences in technique or sample processing. The effect of ambient temperature on the day blood is drawn has been explored.
Health scientists at the University of California, Berkeley (Berkeley, CA, USA) and from the University of Chicago (Chicago, IL, USA) analyzed a large dataset of test results from 2009 to 2015, spanning several climate zones. In a sample of more than four million patients, they modeled more than two million test results as a function of temperature. They measured how day-to-day temperature fluctuations affected results, over and above the patients’ average values, and seasonal variation. In the dataset were 4,877,039 individuals who had laboratory result data. Daily temperature ranges from a low of −28 °C (Fairbanks, AK, USA; February 16, 2011) to 49 °C (Yuma, AZ, USA; July 23, 2014).
The investigators reported that the results showed that temperature affected more than 90% of individual tests and 51 of 75 assays, are significantly affected by temperature, including measures of kidney function (increased creatinine, urea nitrogen, and urine specific gravity), cellular blood components (decreased neutrophils, erythrocytes, and platelets), and lipids (increased high-density lipoprotein [HDL] and decreased total cholesterol, triglycerides, and low-density lipoprotein [LDL]). These small, day-to-day fluctuations did not likely reflect long-term physiological trends. For example, lipid panels checked on cooler days appeared to suggest a lower cardiovascular risk, leading to almost 10% fewer prescriptions for cholesterol-lowering drugs called statins to patients tested on the coolest days compared to the warmest days, even though these results probably did not reflect stable changes in cardiovascular risk.
One practical implication of the study is that laboratories could statistically adjust for ambient temperature on the test day when reporting laboratory results. Doing so could reduce weather-related variability at a lower cost than new laboratory assay technology or investments in temperature control in transport vans. In practice, decisions on adjustment would need to be at the discretion of the laboratory staff and the treating physician, potentially on a case-by-case basis.
Ziad Obermeyer, MD is the Distinguished Associate Professor of Health Policy and Management and first author of the study, said, “The textbook way of thinking about medical investigation is bench to bedside. First, we come up with a hypothesis, based on theory, then we test it with data. As more and more big data comes online, like the massive dataset of laboratory tests we used, we can flip that process on its head: discover fascinating new patterns and then use bench science to get to the bottom of it. I think this bedside-to-bench model is just as important as its better-known cousin because it can open up totally new questions in human physiology.”
The authors concluded that ambient temperature affects the results of many laboratory tests. These distortions, in turn, affect medical decision-making. Statistical adjustment in reporting is feasible and could limit undesired temperature-driven variability. The study was published on December 10, 2021 in the new journal MED.
Related Links:
University of California, Berkeley
University of Chicago
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Molecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more