Metabolomics-Based Test Detects Early-Stage Lung Cancer and Predicts Patient Survival Time
By LabMedica International staff writers Posted on 18 Feb 2022 |

Image: Magic-Angle-Spinning (MAS) nuclear magnetic resonance (NMR) was used to establish the lung cancer predictive model. The sample (blue) is rotating with high frequency inside the main magnetic field (B0). It is tilted by the magic angle θm with respect to the direction of the magnetic field orientation (Photo courtesy of Wikimedia Commons)
A predictive model based on alterations in blood metabolites measured by high-resolution magnetic resonance spectroscopy can detect early-stage lung cancer.
Early-stage lung cancer is mostly asymptomatic, so the disease is usually only diagnosed at a late stage when the survival rate is extremely low. To facilitate earlier detection of lung cancer, investigators at Harvard Medical School’s Massachusetts General Hospital (Boston, USA) created a lung cancer predictive model based on metabolomics profiles in blood samples. Metabolomics is the systematic study of the unique small-molecule chemical fingerprints that specific cellular processes leave behind.
To build a predictive model to indicate lung cancer presence and patient survival using serum samples collected prior to their disease diagnoses, the investigators employed high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS).
The investigators analyzed 10 microliter serum samples obtained from 79 patients before (within five years) and at the time of lung cancer diagnosis. Disease predictive models were established by comparing serum metabolomic patterns between training cohorts: patients with lung cancer at time of diagnosis, and matched healthy controls. These predictive models were then applied to evaluate serum samples of validation and testing cohorts, all collected from patients before their lung cancer diagnosis.
Results revealed that the predictive model could detect changes in blood metabolomic profiles that were intermediate between healthy and disease states. The model was applied to a different group of 54 patients with non-small-cell lung carcinoma (NSCLC) to analyze blood samples obtained before and after their cancer diagnosis. Results confirmed that the model’s predictions were accurate. Furthermore, values from the metabolomics predictive model measured from prior-to-diagnosis sera could be used to predict five-year survival for patients with localized disease.
“Our study demonstrates the potential for developing a sensitive screening tool for the early detection of lung cancer,” said senior author Dr. Leo L. Cheng. associate professor of radiology at Harvard Medical School. “The predictive model we constructed can identify which people may be harboring lung cancer. Individuals with suspicious findings would then be referred for further evaluation by imaging tests, such as low-dose CT, for a definitive diagnosis.”
The predictive model for early diagnosis of lung cancer was described in the December 13, 2021, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.
Related Links:
Massachusetts General Hospital
Early-stage lung cancer is mostly asymptomatic, so the disease is usually only diagnosed at a late stage when the survival rate is extremely low. To facilitate earlier detection of lung cancer, investigators at Harvard Medical School’s Massachusetts General Hospital (Boston, USA) created a lung cancer predictive model based on metabolomics profiles in blood samples. Metabolomics is the systematic study of the unique small-molecule chemical fingerprints that specific cellular processes leave behind.
To build a predictive model to indicate lung cancer presence and patient survival using serum samples collected prior to their disease diagnoses, the investigators employed high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS).
The investigators analyzed 10 microliter serum samples obtained from 79 patients before (within five years) and at the time of lung cancer diagnosis. Disease predictive models were established by comparing serum metabolomic patterns between training cohorts: patients with lung cancer at time of diagnosis, and matched healthy controls. These predictive models were then applied to evaluate serum samples of validation and testing cohorts, all collected from patients before their lung cancer diagnosis.
Results revealed that the predictive model could detect changes in blood metabolomic profiles that were intermediate between healthy and disease states. The model was applied to a different group of 54 patients with non-small-cell lung carcinoma (NSCLC) to analyze blood samples obtained before and after their cancer diagnosis. Results confirmed that the model’s predictions were accurate. Furthermore, values from the metabolomics predictive model measured from prior-to-diagnosis sera could be used to predict five-year survival for patients with localized disease.
“Our study demonstrates the potential for developing a sensitive screening tool for the early detection of lung cancer,” said senior author Dr. Leo L. Cheng. associate professor of radiology at Harvard Medical School. “The predictive model we constructed can identify which people may be harboring lung cancer. Individuals with suspicious findings would then be referred for further evaluation by imaging tests, such as low-dose CT, for a definitive diagnosis.”
The predictive model for early diagnosis of lung cancer was described in the December 13, 2021, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.
Related Links:
Massachusetts General Hospital
Latest Molecular Diagnostics News
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more