LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Pulmonary Eosinophilia Indicates Onset of Allergic Bronchopulmonary Aspergillosis

By LabMedica International staff writers
Posted on 13 Dec 2021
Print article
Image: Histopathology of Allergic bronchopulmonary aspergillosis. Grocott\'s Methenamine Silver Stain  shows branching and helps to confirm that the black structures are indeed fungal hyphae (Photo courtesy of Doctorlib)
Image: Histopathology of Allergic bronchopulmonary aspergillosis. Grocott\'s Methenamine Silver Stain shows branching and helps to confirm that the black structures are indeed fungal hyphae (Photo courtesy of Doctorlib)
Allergic bronchopulmonary aspergillosis (ABPA) is a pulmonary disorder caused by type 2 immune responses to Aspergillus. This pathology usually develops after the onset of bronchial asthma (BA) or cystic fibrosis. Rates differ among countries, but appear to be increasing around the world with the increase of BA.

Several diagnostic criteria for ABPA have been proposed, such as a history of BA or cystic fibrosis, characteristic radiographic pulmonary opacities including central dilatation of the bronchus, elevated immunoglobulin (Ig)E levels, and hypersensitivity reaction to Aspergillus including elevated IgE antibodies against Aspergillus fumigatus and/or IgG antibodies for Aspergillus. ABPA and chronic eosinophilic pneumonia (CEP) both display peripheral eosinophilia as well as pulmonary infiltration, together described as pulmonary eosinophilia, and differentiation is sometimes problematic.

Pulmonologists at the Osaka Toneyama Medical Center (Osaka, Japan) performed a retrospective, single-center study that included patients that fulfilled the diagnostic criteria for ABPA, which included a history of BA or cystic fibrosis and both of the following: positive immediate cutaneous hypersensitivity to Aspergillus antigen or specific IgE to A. fumigatus, and elevated total IgE level in serum  > 1000 IU/mL. Also the presence of precipitating or IgG antibodies against A. fumigatus in serum; pulmonary opacities consistent with ABPA on radiographic imaging; and total eosinophil count  > 500 cells/µL in steroid-naïve patients were considered.

Patients were assigned to either the eosinophilic pneumonia (EP) group or Non-EP group, defined according to findings on high-resolution computed tomography (HRCT). The EP group included patients with HRCT findings compatible with CEP; i.e., the presence of peripheral consolidation (p-consolidation) or ground-glass opacities (GGO), with no evidence of high-attenuation mucus. The Non-EP group comprised the remaining patients, who showed classical findings of ABPA such as mucoid impaction. Differences between the groups were analyzed.

The investigators reported that baseline characteristics, frequency of a history of CEP (EP, 50% versus Non-EP, 26%) and tentative diagnosis of CEP before diagnosis of ABPA (67% versus 16%) did not differ significantly between groups. Although elevated absolute eosinophil count and Aspergillus-specific immunoglobulin E titers did not differ significantly between groups, the Non-EP group showed a strong positive correlation between these values (R  = 0.7878). All patients showed peripheral eosinophilia (median, 1,540 cells/μL), elevated level of IgE (median, 2,802 IU/mL) and positive reactions for Aspergillus-specific IgE (median, 20.7 IU/mL).

The Non-EP group displayed significantly higher levels of the fungal marker beta-D glucan (median, 11.7 pg/mL; interquartile range, 6.7–18.4 pg/mL) than the EP group (median, 6.6 pg/mL; interquartile range, 5.2–9.3 pg/ml). Both groups exhibited frequent recurrence of shadows on X-rays but no cases in the EP group had progressed to the Non-EP group at the time of relapse.

The authors concluded that the ABPA subgroup with imaging findings resembling CEP experienced frequent recurrences, as in typical ABPA. In pulmonary eosinophilia, even if there are no shadows indicating apparent mucous change, the Aspergillus-specific immunoglobulin E level is important in obtaining an accurate diagnosis and in the selection of appropriate therapies for this type of ABPA. The study was published on November 18, 2021 in the journal Allergy, Asthma & Clinical Immunology.

Related Links:
Osaka Toneyama Medical Center

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
High Performance Centrifuge
CO336/336R
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.