CSF Conversion Assay Identifies Lewy Body Disease Cognitive Impairment
By LabMedica International staff writers Posted on 08 Aug 2021 |

Photomicrograph shows brown-immunostained alpha-synuclein in Lewy bodies (large clumps) and Lewy neurites (thread-like structures) in the neocortical tissue of a person who died with Lewy body disease (Photo courtesy of Movalley)
Lewy body dementia, also known as dementia with Lewy bodies, is the second most common type of progressive dementia after Alzheimer's disease. Protein deposits, called Lewy bodies, develop in nerve cells in the brain regions involved in thinking, memory and movement (motor control).
Real-time quaking-induced conversion (RT-QuIC) is a highly sensitive assay originally used for prion detection. The "quaking" in the name of the technique refers to the fact that samples in the RT-QuIC assay are literally subjected to shaking. This action breaks apart aggregates of protein that are then further incubated, amplifying the amount of protein to detectable levels.
Neurology Scientists at the Institute of Neurological Sciences of Bologna (Bologna, Italy) investigated whether the cerebrospinal fluid (CSF) α-synuclein (α-syn) real-time quaking-induced conversion (RT-QuIC) assay accurately identifies patients with mild cognitive impairment due to probable Lewy body disease (MCI-LB).
The team applied α-syn RT-QuIC to 289 CSF samples obtained from two independent cohorts, including 81 patients with probable MCI-LB (70.7± 6.6 years, 13.6% female, Mini-Mental State Examination (MMSE) 26.1 ± 2.4), 120 with probable MCI-AD (68.6 ± 7.4 years, 45.8% female, MMSE 25.5 ± 2.8), and 30 with unspecified MCI (65.4 ± 9.3 years, 30.0% female, MMSE 27.0 ± 3 .0). Fifty-eight individuals with no cognitive decline or evidence of neurodegenerative disease and 121 individuals lacking brain α-syn deposits at the neuropathological examination were used as controls.
The investigators reported that RT-QuIC identified MCI-LB patients against cognitively unimpaired controls with 95% sensitivity, 97% specificity, and 96% accuracy, and showed 98% specificity in neuropathological controls. The accuracy of the test for MCI-LB was consistent between the two cohorts (97.3% versus 93.7%). Thirteen percent of MCI-AD patients also had a positive test; of note, 44% of them developed one core or supportive clinical feature of dementia with Lewy bodies (DLB) at follow-up, suggesting an underlying LB co-pathology.
The scientists noted that taken together, these findings are in line with preliminary results obtained in patients with isolated REM sleep behavior disorder, pure autonomic failure and those with incidental Lewy body dementia at post-mortem examination, demonstrating that patients with Lewy body dementia harbor significant alpha-synuclein seeding activity early in the course of the disease, irrespective of clinical presentation.
The authors concluded that their findings indicated that CSF α-syn RT-QuIC is a robust biomarker for prodromal DLB and accurately identified dementia with Lewy bodies in patients at the prodromal clinical stage and demonstrated high specificity in a large cohort of individuals examined neuropathologically. The study was published on July 1, 2021 in the journal Neurology.
Related Links:
Institute of Neurological Sciences of Bologna
Real-time quaking-induced conversion (RT-QuIC) is a highly sensitive assay originally used for prion detection. The "quaking" in the name of the technique refers to the fact that samples in the RT-QuIC assay are literally subjected to shaking. This action breaks apart aggregates of protein that are then further incubated, amplifying the amount of protein to detectable levels.
Neurology Scientists at the Institute of Neurological Sciences of Bologna (Bologna, Italy) investigated whether the cerebrospinal fluid (CSF) α-synuclein (α-syn) real-time quaking-induced conversion (RT-QuIC) assay accurately identifies patients with mild cognitive impairment due to probable Lewy body disease (MCI-LB).
The team applied α-syn RT-QuIC to 289 CSF samples obtained from two independent cohorts, including 81 patients with probable MCI-LB (70.7± 6.6 years, 13.6% female, Mini-Mental State Examination (MMSE) 26.1 ± 2.4), 120 with probable MCI-AD (68.6 ± 7.4 years, 45.8% female, MMSE 25.5 ± 2.8), and 30 with unspecified MCI (65.4 ± 9.3 years, 30.0% female, MMSE 27.0 ± 3 .0). Fifty-eight individuals with no cognitive decline or evidence of neurodegenerative disease and 121 individuals lacking brain α-syn deposits at the neuropathological examination were used as controls.
The investigators reported that RT-QuIC identified MCI-LB patients against cognitively unimpaired controls with 95% sensitivity, 97% specificity, and 96% accuracy, and showed 98% specificity in neuropathological controls. The accuracy of the test for MCI-LB was consistent between the two cohorts (97.3% versus 93.7%). Thirteen percent of MCI-AD patients also had a positive test; of note, 44% of them developed one core or supportive clinical feature of dementia with Lewy bodies (DLB) at follow-up, suggesting an underlying LB co-pathology.
The scientists noted that taken together, these findings are in line with preliminary results obtained in patients with isolated REM sleep behavior disorder, pure autonomic failure and those with incidental Lewy body dementia at post-mortem examination, demonstrating that patients with Lewy body dementia harbor significant alpha-synuclein seeding activity early in the course of the disease, irrespective of clinical presentation.
The authors concluded that their findings indicated that CSF α-syn RT-QuIC is a robust biomarker for prodromal DLB and accurately identified dementia with Lewy bodies in patients at the prodromal clinical stage and demonstrated high specificity in a large cohort of individuals examined neuropathologically. The study was published on July 1, 2021 in the journal Neurology.
Related Links:
Institute of Neurological Sciences of Bologna
Latest Pathology News
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
Channels
Molecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more