Monocyte Distribution Width Evaluated as a Sepsis Indicator
|
By LabMedica International staff writers Posted on 01 Jul 2021 |

Image: The DxH 900 hematology analyzer enables the high-volume laboratory to achieve RBC, PLT and WBC differentials through near native-state cellular characterization (Photo courtesy of Beckman Coulter)
Most current automated hematology analyzers have enhanced cell counting functions including the addition of new cell types such as nucleated red blood cells or immature granulocytes, making it possible to obtain a precise quantification of peripheral blood cells in pathological conditions.
Cellular analysis technologies are able to explore qualitative aspects of leukocytes (white blood cells, WBCs) and provide numerous additional parameters, indicating functional information for each leukocyte type, the so-called cell population data (CPD). Since sepsis represents a life-threatening condition, without characteristic signs or symptoms, early detection for timely and appropriate management is crucial to patient survival.
Medical Laboratorians at the University-Hospital of Padova (Padova, Italy) evaluated the diagnostic accuracy and prognostication of monocyte distribution width (MDW) in sepsis for patients admitted to Intensive Care Units (ICU). The scientists conducted a prospective observational study during the hospitalization of 506 adult patients admitted to the ICU. MDW was evaluated in 2,367 consecutive samples received for routine complete blood counts (CBC) performed once a day and every day during the study. Sepsis was diagnosed according to Sepsis-3 criteria and patients enrolled were classified in the following groups: no sepsis, sepsis, and septic shock. There were 346 men and 160 women, aged from 18 to 89 years (median 68 years) in the study.
Complete blood count (CBC) and MDW were analyzed using the UniCel DxH 900 (Beckman Coulter, Inc, Brea, CA, USA). At the same time, 2,128 samples were determined for C-reactive protein (CRP) and 2,035 samples for procalcitonin (PCT), as part of the clinical examination. Serum CRP was determined using a nephelometric/turbidimetric technique of the Dimension Vista System (Siemens Healthcare GmbH, Milan, Italy). PCT was determined using chemiluminescence immunoassay (CLIA) technology with paramagnetic microparticle solid phase of the LIAISONs BRAHMS PCTs II GEN System (DiaSorin, Saluggia, Italy).
The investigators reported that MDW values were significantly higher in patients with sepsis or septic shock in comparison to those within the no sepsis group: median 26.23, 28.97, and 21.99 respectively. ROC analysis demonstrated that AUC is 0.785 with a sensitivity of 66.88% and specificity of 77.79% at a cut-off point of 24.63. In patients that developed an ICU-acquired sepsis MDW showed an increase from 21.33 to 29.19. MDW increase was not affected by the etiology of sepsis, even in patients with COVID-19. In sepsis survivors a decrease of MDW values were found from the first time to the end of their stay: median from 29.14 to 25.67.
The authors concluded that MDW, a parameter that reflects a change in circulating monocytes volume in response to pro-inflammatory signals from infectious organisms referred to as pathogen-associated molecular patterns, can have potential clinical applications for early sepsis detection in hospital and ICU settings. The study was published on the July, 2021 issue of the journal Clinical Chemistry and Laboratory Medicine.
Related Links:
University-Hospital of Padova
Beckman Coulter
Siemens Healthcare
DiaSorin
Cellular analysis technologies are able to explore qualitative aspects of leukocytes (white blood cells, WBCs) and provide numerous additional parameters, indicating functional information for each leukocyte type, the so-called cell population data (CPD). Since sepsis represents a life-threatening condition, without characteristic signs or symptoms, early detection for timely and appropriate management is crucial to patient survival.
Medical Laboratorians at the University-Hospital of Padova (Padova, Italy) evaluated the diagnostic accuracy and prognostication of monocyte distribution width (MDW) in sepsis for patients admitted to Intensive Care Units (ICU). The scientists conducted a prospective observational study during the hospitalization of 506 adult patients admitted to the ICU. MDW was evaluated in 2,367 consecutive samples received for routine complete blood counts (CBC) performed once a day and every day during the study. Sepsis was diagnosed according to Sepsis-3 criteria and patients enrolled were classified in the following groups: no sepsis, sepsis, and septic shock. There were 346 men and 160 women, aged from 18 to 89 years (median 68 years) in the study.
Complete blood count (CBC) and MDW were analyzed using the UniCel DxH 900 (Beckman Coulter, Inc, Brea, CA, USA). At the same time, 2,128 samples were determined for C-reactive protein (CRP) and 2,035 samples for procalcitonin (PCT), as part of the clinical examination. Serum CRP was determined using a nephelometric/turbidimetric technique of the Dimension Vista System (Siemens Healthcare GmbH, Milan, Italy). PCT was determined using chemiluminescence immunoassay (CLIA) technology with paramagnetic microparticle solid phase of the LIAISONs BRAHMS PCTs II GEN System (DiaSorin, Saluggia, Italy).
The investigators reported that MDW values were significantly higher in patients with sepsis or septic shock in comparison to those within the no sepsis group: median 26.23, 28.97, and 21.99 respectively. ROC analysis demonstrated that AUC is 0.785 with a sensitivity of 66.88% and specificity of 77.79% at a cut-off point of 24.63. In patients that developed an ICU-acquired sepsis MDW showed an increase from 21.33 to 29.19. MDW increase was not affected by the etiology of sepsis, even in patients with COVID-19. In sepsis survivors a decrease of MDW values were found from the first time to the end of their stay: median from 29.14 to 25.67.
The authors concluded that MDW, a parameter that reflects a change in circulating monocytes volume in response to pro-inflammatory signals from infectious organisms referred to as pathogen-associated molecular patterns, can have potential clinical applications for early sepsis detection in hospital and ICU settings. The study was published on the July, 2021 issue of the journal Clinical Chemistry and Laboratory Medicine.
Related Links:
University-Hospital of Padova
Beckman Coulter
Siemens Healthcare
DiaSorin
Latest Clinical Chem. News
- Chemical Imaging Probe Could Track and Treat Prostate Cancer
- Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
- Prostate Cancer Markers Based on Chemical Make-Up of Calcifications to Speed Up Detection
- Breath Test Could Help Detect Blood Cancers
- ML-Powered Gas Sensors to Detect Pathogens and AMR at POC
- Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation
- Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs

- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








