Liquid Biopsies Detect Pediatric Bone Tumors Based on Epigenetic Profiles
By LabMedica International staff writers Posted on 17 Jun 2021 |

Image: The QIAsymphony SP enables sample preparation of DNA, RNA, and bacterial and viral nucleic acids from a wide range of starting materials (Photo courtesy of Qiagen)
Sequencing of cell-free DNA (cfDNA) in the blood of cancer patients (liquid biopsy) provides attractive opportunities for early diagnosis, assessment of treatment response, and minimally invasive disease monitoring. As a consequence, cfDNA analysis holds great promise for precision oncology and personalized therapies, and is currently evaluated in a broad range of clinical studies.
Ewing sarcoma (EwS) constitutes an ideal model cancer for establishing and validating fragment-based liquid biopsy analysis for pediatric tumors. EwS has a unique epigenetic signature with established clinical associations, which constitutes a potential epigenetic marker for early diagnosis and tumor classification based on cfDNA. Moreover, EwS tumors have well-established genetic aberrations that can be used for comparison.
An international team led by scientists at the St. Anna Children’s Cancer Research Institute (Vienna, Austria) and their colleagues included 200 plasma samples from 95 patients with EwS and 41 plasma samples from 31 patients with other types of sarcoma: EwS-like sarcoma (three patients, two of which were positive for the CIC-DUX4 fusion gene), osteosarcoma (eight patients), rhabdomyosarcoma (12 patients), synovial sarcoma (three patients), and other types of sarcoma (five patients). Plasma samples from 22 healthy individuals (24–50 years old) were used as controls.
cfDNA was isolated using the QIAsymphony Circulating DNA Kit with the QIAsymphony SP instrument or the QIAampMinElute cfDNA Kit (Qiagen, Hilden, Germany). Whole-genome sequencing libraries were generated from 10 ng of cfDNA. Final libraries were eluted in 20 µl nuclease-free water, quantified with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Patient-specific assays for fusion gene detection and quantification were designed following the guidelines from the Bio-Rad ddPCR (Bio-Rad, Hercules, CA, USA).
The team reported that after confirming that they could detect tumor-derived DNA in their cell-free DNA samples, they noted that the tumor-derived DNA tended to be shorter than the cell-free DNA found among healthy controls. These fragments were often about 167 base pairs in size, which corresponds to the length of DNA that wraps around a nucleosome plus linker DNA. These shorter tumor-derived DNA fragments were additionally found among patients for whom there were no detectable genetic changes. This suggested that fragmentation patterns could be used to identify tumor-derived DNA independent of genetic alterations.
The scientists further developed a tool they dubbed LIQUORICE, for liquid biopsy regions-of-interest coverage estimation, that overlays these genome-wide cell-free DNA fragment profiles atop a predetermined set of genomic regions where epigenetic changes often occur in the cancer type. In that way, it develops a consensus signature of fragment coverage in those regions. They additionally developed machine-learning classifiers to not only distinguish individuals with cancer from controls but also between different types of pediatric sarcoma, without relying on the recurrent genetic changes. When they tested their classifiers, they found they were highly sensitive.
The authors concluded that their study demonstrated how deep whole-genome sequencing of cfDNA enables comprehensive detection, classification, and monitoring of pediatric tumors based on their genetic and epigenetic profiles, thus providing a clinically relevant method for liquid biopsy analysis in cancers with few or no genetic alterations. The study was published on May 28,2021 in the journal Nature Communications.
Related Links:
St. Anna Children’s Cancer Research Institute
Qiagen
Thermo Fisher Scientific
Bio-Rad
Ewing sarcoma (EwS) constitutes an ideal model cancer for establishing and validating fragment-based liquid biopsy analysis for pediatric tumors. EwS has a unique epigenetic signature with established clinical associations, which constitutes a potential epigenetic marker for early diagnosis and tumor classification based on cfDNA. Moreover, EwS tumors have well-established genetic aberrations that can be used for comparison.
An international team led by scientists at the St. Anna Children’s Cancer Research Institute (Vienna, Austria) and their colleagues included 200 plasma samples from 95 patients with EwS and 41 plasma samples from 31 patients with other types of sarcoma: EwS-like sarcoma (three patients, two of which were positive for the CIC-DUX4 fusion gene), osteosarcoma (eight patients), rhabdomyosarcoma (12 patients), synovial sarcoma (three patients), and other types of sarcoma (five patients). Plasma samples from 22 healthy individuals (24–50 years old) were used as controls.
cfDNA was isolated using the QIAsymphony Circulating DNA Kit with the QIAsymphony SP instrument or the QIAampMinElute cfDNA Kit (Qiagen, Hilden, Germany). Whole-genome sequencing libraries were generated from 10 ng of cfDNA. Final libraries were eluted in 20 µl nuclease-free water, quantified with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Patient-specific assays for fusion gene detection and quantification were designed following the guidelines from the Bio-Rad ddPCR (Bio-Rad, Hercules, CA, USA).
The team reported that after confirming that they could detect tumor-derived DNA in their cell-free DNA samples, they noted that the tumor-derived DNA tended to be shorter than the cell-free DNA found among healthy controls. These fragments were often about 167 base pairs in size, which corresponds to the length of DNA that wraps around a nucleosome plus linker DNA. These shorter tumor-derived DNA fragments were additionally found among patients for whom there were no detectable genetic changes. This suggested that fragmentation patterns could be used to identify tumor-derived DNA independent of genetic alterations.
The scientists further developed a tool they dubbed LIQUORICE, for liquid biopsy regions-of-interest coverage estimation, that overlays these genome-wide cell-free DNA fragment profiles atop a predetermined set of genomic regions where epigenetic changes often occur in the cancer type. In that way, it develops a consensus signature of fragment coverage in those regions. They additionally developed machine-learning classifiers to not only distinguish individuals with cancer from controls but also between different types of pediatric sarcoma, without relying on the recurrent genetic changes. When they tested their classifiers, they found they were highly sensitive.
The authors concluded that their study demonstrated how deep whole-genome sequencing of cfDNA enables comprehensive detection, classification, and monitoring of pediatric tumors based on their genetic and epigenetic profiles, thus providing a clinically relevant method for liquid biopsy analysis in cancers with few or no genetic alterations. The study was published on May 28,2021 in the journal Nature Communications.
Related Links:
St. Anna Children’s Cancer Research Institute
Qiagen
Thermo Fisher Scientific
Bio-Rad
Latest Pathology News
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more