A High-Throughput Single Telomere Length Analysis Approach for Diagnosis of Telomeopathic Diseases
By LabMedica International staff writers Posted on 29 Mar 2021 |

Image: Human chromosomes (grey) capped by telomeres (white) (Photo courtesy of U.S. Department of Energy Human Genome Program via Wikimedia Commons)
A high-throughput single telomere length analysis (HT-STELA) technique for measuring telomere length has been used to diagnose patients with a variety of telomeropathic diseases.
Telomeres are the structures at the ends of chromosomes that protect these ends from degradation or joining to one another. Telomeres consist of repeat DNA sequences and the length is gradually eroded as the cell ages. Mounting evidence suggests a causal role for telomere dysfunction in a number of degenerative disorders. Their manifestations encompass common disease states such as idiopathic pulmonary fibrosis and bone marrow failure. Although these disorders seem to be clinically diverse, collectively they comprise a single syndrome spectrum defined by the short telomere defect. In rare cases, a patient’s telomere syndrome may appear as a condition called dyskeratosis congenita. This condition, which makes up about 1% of all telomere syndromes, is characterized by abnormal findings in the skin, mouth, and nails.
Single telomere length analysis (STELA) is a high-resolution single-molecule approach to determine telomere length distributions including those in the lower length ranges that are not so apparent with other commonly used technologies. However, STELA is labor intensive and based on Southern hybridization and is not well suited for the analysis of large cohorts, or for clinical laboratory applications. To overcome these limitations, investigators at Cardiff University (United Kingdom) and Queen Mary University London (United Kingdom) adapted STELA for high-throughput analysis (HT-STELA) of cancer cell populations and successfully applied this procedure to predict response to treatment in patients with chronic lymphocytic leukemia.
In the current study, the investigators employed HT-STELA to examine the full extent of telomere erosion in individuals with dyskeratosis congenita and related disorders, and to determine the utility of high-resolution telomere length analysis as a potential diagnostic test for telomeropathies.
HT-STELA was applied to a cohort of 171 unaffected individuals and a retrospective cohort of 172 short telomere mutation carriers. Results revealed that HT-STELA displayed a low measurement error with inter- and intra-assay coefficient of variance of 2.3% and 1.8%, respectively. While telomere length in unaffected individuals declined as a function of age, telomere length in mutation carriers appeared to increase due to a preponderance of shorter telomeres detected in younger individuals. These individuals were more severely affected, and age-adjusted telomere length differentials could be used to stratify the cohort for overall survival.
Telomere lengths of asymptomatic mutation carriers were shorter than controls, but longer than symptomatic mutation carriers, and telomere length heterogeneity was dependent on the diagnosis and mutational status. Thus, the data demonstrated that the ability of HT-STELA to detect short telomere lengths, that are not readily detected with other methods, meant it could provide powerful diagnostic discrimination and prognostic information.
Senior author Dr. Duncan M. Baird, professor of cancer and genetics at Cardiff University, said, "If a patient presents with a severe symptom such as bone marrow failure we can now test, more accurately and rapidly than ever before, if this is the result of a telomeropathy, thereby speeding up the process of providing a diagnosis for these patients. We believe the speed and accuracy of this technology will provide a step-change in the clinical utility of telomere testing."
The HT-STELA study was published in the March 11, 2021, online edition of the journal Human Genetics.
Related Links:
Cardiff University
Queen Mary University London
Telomeres are the structures at the ends of chromosomes that protect these ends from degradation or joining to one another. Telomeres consist of repeat DNA sequences and the length is gradually eroded as the cell ages. Mounting evidence suggests a causal role for telomere dysfunction in a number of degenerative disorders. Their manifestations encompass common disease states such as idiopathic pulmonary fibrosis and bone marrow failure. Although these disorders seem to be clinically diverse, collectively they comprise a single syndrome spectrum defined by the short telomere defect. In rare cases, a patient’s telomere syndrome may appear as a condition called dyskeratosis congenita. This condition, which makes up about 1% of all telomere syndromes, is characterized by abnormal findings in the skin, mouth, and nails.
Single telomere length analysis (STELA) is a high-resolution single-molecule approach to determine telomere length distributions including those in the lower length ranges that are not so apparent with other commonly used technologies. However, STELA is labor intensive and based on Southern hybridization and is not well suited for the analysis of large cohorts, or for clinical laboratory applications. To overcome these limitations, investigators at Cardiff University (United Kingdom) and Queen Mary University London (United Kingdom) adapted STELA for high-throughput analysis (HT-STELA) of cancer cell populations and successfully applied this procedure to predict response to treatment in patients with chronic lymphocytic leukemia.
In the current study, the investigators employed HT-STELA to examine the full extent of telomere erosion in individuals with dyskeratosis congenita and related disorders, and to determine the utility of high-resolution telomere length analysis as a potential diagnostic test for telomeropathies.
HT-STELA was applied to a cohort of 171 unaffected individuals and a retrospective cohort of 172 short telomere mutation carriers. Results revealed that HT-STELA displayed a low measurement error with inter- and intra-assay coefficient of variance of 2.3% and 1.8%, respectively. While telomere length in unaffected individuals declined as a function of age, telomere length in mutation carriers appeared to increase due to a preponderance of shorter telomeres detected in younger individuals. These individuals were more severely affected, and age-adjusted telomere length differentials could be used to stratify the cohort for overall survival.
Telomere lengths of asymptomatic mutation carriers were shorter than controls, but longer than symptomatic mutation carriers, and telomere length heterogeneity was dependent on the diagnosis and mutational status. Thus, the data demonstrated that the ability of HT-STELA to detect short telomere lengths, that are not readily detected with other methods, meant it could provide powerful diagnostic discrimination and prognostic information.
Senior author Dr. Duncan M. Baird, professor of cancer and genetics at Cardiff University, said, "If a patient presents with a severe symptom such as bone marrow failure we can now test, more accurately and rapidly than ever before, if this is the result of a telomeropathy, thereby speeding up the process of providing a diagnosis for these patients. We believe the speed and accuracy of this technology will provide a step-change in the clinical utility of telomere testing."
The HT-STELA study was published in the March 11, 2021, online edition of the journal Human Genetics.
Related Links:
Cardiff University
Queen Mary University London
Latest Molecular Diagnostics News
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more