Gene Expression Signature Traces Nonalcoholic Fatty Liver Disease Progression
By LabMedica International staff writers Posted on 16 Dec 2020 |

Image: nCounter NanoString: Gene expression profiling platform (Photo courtesy of Institute Pasteur).
Nonalcoholic fatty liver disease (NAFLD) is a common condition marked by the accumulation of triglycerides and other lipids in the liver and is associated with metabolic syndrome, type 2 diabetes, hypertension, and dyslipidemia.
NAFLD can be divided into two subtypes: nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). NAFL can develop into NASH and advanced fibrosis. An expression signature of more than two dozen genes can trace the progression of nonalcoholic fatty liver to nonalcoholic steatohepatitis.
An international team of scientists led by those at Newcastle University (Newcastle upon Tyne, UK) performed RNA-sequencing on liver biopsies from a discovery cohort of 206 patients, 53 with NAFL and 153 with NASH. Unsupervised clustering separated the cohort into two groups, one of which was marked by more advanced fibrosis and included more patients diagnosed with NASH. Nearly 1,300 genes were differentially expressed between the two clusters. They additionally identified more than 2,600 differentially expressed genes between their discovery cohort and a set of healthy obese controls. They also uncovered genes that were differentially expressed between the various stages of NASH progression.
The team translating their findings to the protein level using SomaScan analysis (SomaLogic, Inc, Boulder. CO, USA) and in more than 300 NAFLD serum samples confirmed that circulating concentrations of proteins Aldo-Keto Reductase Family 1 Member B10 (AKR1B10) and Growth/differentiation factor 15 (GDF15) were strongly associated with disease activity and fibrosis stage. The scientists homed in on a set of 25 genes that were associated with progression from NAFL to NASH and to more severe forms of NASH. Using NanoString Technologies’ gene expression platform (Seattle WA, USA), they replicated 21 of the 25 genes in the signature as significantly differentially expressed when comparing different stages of the liver disease in a cohort of 175 patients. This set of genes included several involved in inflammation, retinol metabolism, and Wnt signaling, and they found that many could be induced by endoplasmic reticulum stress.
The team used in vitro functional studies and determined that endoplasmic reticulum stress up-regulated expression of AKR1B10, GDF15, and PDGFA, whereas GDF15 supplementation tempered the inflammatory response in macrophages upon lipid loading and lipopolysaccharide stimulation. They used immunohistochemistry and confirmed that certain markers like AKR1B10, GDF15, and STMN2 were expressed by particular liver cells. AKR1B10, for instance, was more likely to be found in ballooned hepatocytes, and the number of AKR1B10-positive hepatocytes increased with disease stage.
The authors concluded that their transcriptomic data, from a large histologically characterized NAFLD cohort, provide insights into disease pathophysiology, identifying both stable and dynamic differences in gene expression that occur during NAFLD progression. The study was published on December 2, 2020 in the journal Science Translational Medicine.
Related Links:
Newcastle University
SomaLogic, Inc
NanoString Technologies
NAFLD can be divided into two subtypes: nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). NAFL can develop into NASH and advanced fibrosis. An expression signature of more than two dozen genes can trace the progression of nonalcoholic fatty liver to nonalcoholic steatohepatitis.
An international team of scientists led by those at Newcastle University (Newcastle upon Tyne, UK) performed RNA-sequencing on liver biopsies from a discovery cohort of 206 patients, 53 with NAFL and 153 with NASH. Unsupervised clustering separated the cohort into two groups, one of which was marked by more advanced fibrosis and included more patients diagnosed with NASH. Nearly 1,300 genes were differentially expressed between the two clusters. They additionally identified more than 2,600 differentially expressed genes between their discovery cohort and a set of healthy obese controls. They also uncovered genes that were differentially expressed between the various stages of NASH progression.
The team translating their findings to the protein level using SomaScan analysis (SomaLogic, Inc, Boulder. CO, USA) and in more than 300 NAFLD serum samples confirmed that circulating concentrations of proteins Aldo-Keto Reductase Family 1 Member B10 (AKR1B10) and Growth/differentiation factor 15 (GDF15) were strongly associated with disease activity and fibrosis stage. The scientists homed in on a set of 25 genes that were associated with progression from NAFL to NASH and to more severe forms of NASH. Using NanoString Technologies’ gene expression platform (Seattle WA, USA), they replicated 21 of the 25 genes in the signature as significantly differentially expressed when comparing different stages of the liver disease in a cohort of 175 patients. This set of genes included several involved in inflammation, retinol metabolism, and Wnt signaling, and they found that many could be induced by endoplasmic reticulum stress.
The team used in vitro functional studies and determined that endoplasmic reticulum stress up-regulated expression of AKR1B10, GDF15, and PDGFA, whereas GDF15 supplementation tempered the inflammatory response in macrophages upon lipid loading and lipopolysaccharide stimulation. They used immunohistochemistry and confirmed that certain markers like AKR1B10, GDF15, and STMN2 were expressed by particular liver cells. AKR1B10, for instance, was more likely to be found in ballooned hepatocytes, and the number of AKR1B10-positive hepatocytes increased with disease stage.
The authors concluded that their transcriptomic data, from a large histologically characterized NAFLD cohort, provide insights into disease pathophysiology, identifying both stable and dynamic differences in gene expression that occur during NAFLD progression. The study was published on December 2, 2020 in the journal Science Translational Medicine.
Related Links:
Newcastle University
SomaLogic, Inc
NanoString Technologies
Latest Molecular Diagnostics News
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more