We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood-Based Test Accurately Identifies Viral Infection Before Symptoms Develop

By LabMedica International staff writers
Posted on 07 Oct 2020
Print article
Image: The Applied Biosystems ViiA 7 Real-Time PCR System combines all of the qPCR features in a single high performance instrument (Photo courtesy of Thermo Fisher Scientific).
Image: The Applied Biosystems ViiA 7 Real-Time PCR System combines all of the qPCR features in a single high performance instrument (Photo courtesy of Thermo Fisher Scientific).
Acute viral infections are one of the most common reasons for visits to primary care physicians in high-income countries. The usefulness of traditional pathogen-focused diagnostic methods for viral infection (e.g., culture, serology, antigen detection, and PCR) is limited by the fact they can be slow, costly, and restricted in terms of breadth of pathogens detected.

Previous studies on diagnostics for naturally acquired infection has focused on identifying symptomatic individuals at the time of clinical presentation for medical care, which is often late in the time course of many viral infections. Identification of infectious causes in earlier, presymptomatic phases of illness provides an opportunity to optimize and deliver timely, and thus more effective, therapy, refine prophylaxis decisions, and guide public health interventions such as isolation and quarantine.

Infectious Disease specialists at Duke University Medical Center (Durham, NC, USA) and their associates enrolled 1,465 college students at the university between 2009 and 2015 and monitored them for the entire academic year for the presence and severity of eight symptoms of respiratory tract infections. Participants filled out a daily web-based survey, rating symptoms on a scale of 0-4. Index cases were defined as study participants who reported a 6-point increase in a cumulative daily symptom score. Biospecimens were collected from 264 index cases with clinical illness, of whom 150 had a respiratory viral cause confirmed by traditional PCR testing of nasopharyngeal samples.

Blood (20 mL) and nasopharyngeal swab samples were collected daily by study staff from confirmed index cases at the time of illness identification. The nasopharyngeal samples were tested for the presence of viruses using commercial multiplex PCR assays (ResPlex II Panel, Qiagen, Hilden, Germany), xTAG respiratory viral panel (Luminex Corporation, Austin, TX, USA), or BioFire FilmArray Respiratory Panel (BioFire Diagnostics, Salt Lake City, UT, USA). The team selected 36 pre-designed TaqMan probes representing genes comprising the acute respiratory viral signature (and normalization controls) to be used on a TaqMan Low Density Array platform run on a ViiA7 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA).

The scientists reported that of the 555 close contacts enrolled and sampled, 162 developed symptoms of respiratory tract infection during observation, of whom 106 had confirmed illness based on traditional viral PCR testing. For most of the study participants, the gene expression test accurately predicted viral infection up to three days before maximum symptoms, often prior to any symptom onset or detectable viral shedding. For influenza, the assay was 99% accurate in predicting illness, 95% accurate for adenovirus and 93% accurate for the cold-causing coronavirus strain.

Micah McClain, MD, PhD, associate professor of Medicine and lead author of a study, said, “Our study demonstrates the potential of this gene expression-based testing approach. We can use the body's natural immune response signals to detect a viral infection with a high degree of accuracy even at a time when people have been exposed to the pathogen but don't yet feel sick.” The study was published on September 24, 2020 in the journal The Lancet Infectious Diseases.


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.