We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New, Portable Lab-on-a-Chip Identifies Concentration of COVID-19 Antibodies in Human Blood In 15 Minutes

By LabMedica International staff writers
Posted on 01 Oct 2020
Print article
Image: New, Portable Lab-on-a-Chip Identifies Concentration of COVID-19 Antibodies in Human Blood In 15 Minutes (Photo courtesy of University of Michigan)
Image: New, Portable Lab-on-a-Chip Identifies Concentration of COVID-19 Antibodies in Human Blood In 15 Minutes (Photo courtesy of University of Michigan)
A new, portable lab-on-a-chip can identify the presence of COVID-19 antibodies in blood with greater speed and efficiency than the current standard “enzyme-linked immunosorbent assay” or ELISA technology.

Researchers from the University of Michigan (Ann Arbor, MI, USA) have developed the device and have shown that it can identify the concentration of COVID-19 antibodies in human blood in 15 minutes. That process normally takes between hours and a few days. The device, which is actually a miniature ELISA, can achieve its faster results with smaller amounts of blood. The work has particular value for the validation of convalescent plasma as a treatment for COVID-19. Microfluidic devices shrink multiple lab functions onto a single chip measured in millimeters or centimeters. In addition to needing smaller sample sizes, they also increase accuracy. This particular system can detect concentration levels of antibodies -something that can vary greatly from plasma donor to donor.

Specifically, the device detects the presence and amount of neutralizing immunoglobulin -antibodies created by the immune system within seven to 10 days of a COVID-19 infection. Only donors with high levels are likely to provide samples that could be effective in treatment, such as convalescent plasma therapy. The treatment involves taking blood from subjects that have previously been diagnosed with COVID-19, and then separating out the plasma - the liquid portion of the blood that contains antibodies. Those antibodies are then given to patients therapeutically in an attempt to boost the immune response. To bolster the data available on convalescent plasma treatments, more donors with high-titer antibody concentrations are needed. The methodology developed by the University of Michigan team provides an efficient and effective way forward.

Screening for proper donors is typically handled by standard ELISA, which requires sample processing and a refrigerator-sized plate-reader for taking measurements. Delays are exacerbated by having to send samples to a lab for analysis. The lab-on-a-chip approach analyzes on site and delivers quantitative evaluations with finger prick’s worth of blood – eight microliters. A traditional ELISA machine requires 100 microliters to do its work. The system is contained in a device the size of a portable 3D printer.

“Convalescent plasma is a treatment that can be very effective – but for it to have the best chance to work, it needs to have rigorous standards, which include assessing the presence of high-titer neutralizing antibodies,” said David Perlin, Ph.D., chief scientific officer and senior vice president of the Hackensack Meridian Center for Discovery and Innovation, and one of the new study’s authors. “This paper shows how the antibody thresholds can mean a better potential COVID-19 treatment – and also better outcomes.”

Related Links:
University of Michigan

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The HelioLiver Dx test has met the coprimary and secondary study endpoints in the CLiMB trial (Photo courtesy of Helio Genomics)

Blood-Based Test Outperforms Ultrasound in Early Liver Cancer Detection

Patients with liver cirrhosis and chronic hepatitis B are at a higher risk for developing hepatocellular carcinoma (HCC), the most prevalent type of liver cancer. The American Association for the Study... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The POC PCR test shortens time for STI test results (Photo courtesy of Visby Medical)

POC STI Test Shortens Time from ED Arrival to Test Results

In a 2024 sexually transmitted infections (STIs) surveillance report by the World Health Organization (WHO), over 2.5 million cases were recorded, alongside a rise in the inappropriate use of antibiotics... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics