We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

An Extracellular Vesicle-Based Liquid Biopsy for Early Cancer Detection

By LabMedica International staff writers
Posted on 27 Aug 2020
Print article
Image: Exosomes are 30-150 nanometer extracellular vesicles containing various molecular cargoes such as RNA and proteins. (Photo courtesy of Wikimedia Commons)
Image: Exosomes are 30-150 nanometer extracellular vesicles containing various molecular cargoes such as RNA and proteins. (Photo courtesy of Wikimedia Commons)
An early diagnostic approach for a wide range of cancers is based on liquid biopsy analysis of proteins found in or released by extracellular vesicles circulating in the blood.

Extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies, are cell-derived lipid-bilayer-enclosed structures, with sizes ranging from 30 to 5,000 nanometers. The vesicles, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies (MVBs) fuse with the plasma membrane, or they are released directly from the plasma membrane. In the past decade, EVs have emerged as important mediators of cell communication because they serve as vehicles for the intercellular transmission of biological signals (proteins or nucleic acids) capable of altering cell function and physiology. Some researchers have speculated that tumors may release EVs as a way to prepare other parts of the body to receive cancer cells when they spread.

To evaluate the potential for an EV-based liquid biopsy for early cancer detection, investigators at Memorial Sloan Kettering Cancer Center (New York, NY, USA) and Weill Cornell Medicine (New York, NY, USA) established the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. In addition to blood and tissue samples from patients with one of 18 different cancers, including breast, colon, and lung, samples from cell lines and mouse models were analyzed. The research included samples which came primarily from MSK. A control group of samples was obtained from individuals who did not have cancer.

Results revealed that among the proteins identified by the assay system, traditional exosome markers included CD9, HSPA8, ALIX, and HSP90AB1, which represented pan-EVP markers. Other proteins, including ACTB, MSN, and RAP1B, were novel pan-EVP markers.

To confirm that EVPs were realistic diagnostic tools, the investigators analyzed proteomes of TE- (n = 151) and plasma-derived (n = 120) EVPs. Comparison of TE EVPs identified proteins (VCAN, TNC, and THBS2) that distinguished tumors from normal tissues with 90% sensitivity and 94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity and 90% specificity in detecting cancer.

"One of the holy grails in cancer medicine is to diagnose an early cancer in a patient based on a blood test," said contributing author Dr. William Jarnagin, chief of the hepatopancreatobiliary service at Memorial Sloan Kettering Cancer Center. "This research is a proof-of-principle study; much more work is needed before it can be used as a screening tool. But ultimately, it would be fantastic if we could use this approach to find cancer in someone before they had symptoms. Even if this test became standard, we still would have to do CT and MRI scans to confirm where the tumor was located. But if you use a blood test to find who might be at risk of having a certain type of cancer, it would be a huge advance because we could target investigations to these high-risk patients."

The liquid biopsy study was published in the August 13, 2020, online edition of the journal Cell.

Related Links:
Memorial Sloan Kettering Cancer Center
Weill Cornell Medicine


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.