Newborn Exome Sequencing Locates Inborn Errors of Metabolism
By LabMedica International staff writers Posted on 25 Aug 2020 |

Image: The role of exome sequencing in newborn screening for inborn errors of metabolism. Low positive predictive value and complex differential diagnoses of MS/MS newborn screening for glutaric academia-1 (Photo courtesy of University of California Berkeley).
Inborn errors of metabolism (IEM) form a large class of genetic diseases involving congenital disorders of metabolism. The majority are due to defects of single genes that code for enzymes that facilitate conversion of various substrates into others products.
Dozens of congenital metabolic diseases are now detectable by newborn screening (NBS) tests, especially expanded testing using mass spectrometry. This is an increasingly common way for the diagnosis to be made and sometimes results in earlier treatment and a better outcome.
A large team of scientist led by those at the University of California Berkeley (Berkeley, CA, USA) selected a subset of dried blood spots from 1,200 deidentified newborns for exome sequencing in discovery and validation stages of the study. That set included more than 800 newborns with known IEMs, along with 385 infants who had false-positive IEM results with tandem mass spec-based screening.
The team’s analysis focused on 78 genes previously implicated in four-dozen forms of IEM that are currently included in newborn screening programs in California. The NBSeq project evaluated whole-exome sequencing (WES) as an innovative methodology for NBS. The team found that the exome sequencing-based strategy could pick up authentic IEM with 88% sensitivity, compared to 99% sensitivity with tandem mass spec-based testing. The exome sequencing screening arm of the study uncovered IEMs with more than 98% specificity, while the established tandem mass spec screening method had a specificity of 99.8% for detecting IEMs.
The WES alone was insufficiently sensitive or specific to be a primary screen for most NBS IEMs. However, as a secondary test for infants with abnormal MS/MS screens, WES could reduce false-positive results, facilitate timely case resolution and in some instances even suggest more appropriate or specific diagnosis than that initially obtained.
The authors concluded that newborn sequencing IEMs provide an ideal model for evaluating the role of sequencing in population screening because most are Mendelian disorders affecting well-understood biochemical pathways, and many have been studied extensively. They noted that sensitivity and specificity of sequence-based detection of IEMs can be directly compared to those of current MS/MS screening. The study was published on August 10, 2020 in the journal Nature Medicine.
Related Links:
University of California Berkeley
Dozens of congenital metabolic diseases are now detectable by newborn screening (NBS) tests, especially expanded testing using mass spectrometry. This is an increasingly common way for the diagnosis to be made and sometimes results in earlier treatment and a better outcome.
A large team of scientist led by those at the University of California Berkeley (Berkeley, CA, USA) selected a subset of dried blood spots from 1,200 deidentified newborns for exome sequencing in discovery and validation stages of the study. That set included more than 800 newborns with known IEMs, along with 385 infants who had false-positive IEM results with tandem mass spec-based screening.
The team’s analysis focused on 78 genes previously implicated in four-dozen forms of IEM that are currently included in newborn screening programs in California. The NBSeq project evaluated whole-exome sequencing (WES) as an innovative methodology for NBS. The team found that the exome sequencing-based strategy could pick up authentic IEM with 88% sensitivity, compared to 99% sensitivity with tandem mass spec-based testing. The exome sequencing screening arm of the study uncovered IEMs with more than 98% specificity, while the established tandem mass spec screening method had a specificity of 99.8% for detecting IEMs.
The WES alone was insufficiently sensitive or specific to be a primary screen for most NBS IEMs. However, as a secondary test for infants with abnormal MS/MS screens, WES could reduce false-positive results, facilitate timely case resolution and in some instances even suggest more appropriate or specific diagnosis than that initially obtained.
The authors concluded that newborn sequencing IEMs provide an ideal model for evaluating the role of sequencing in population screening because most are Mendelian disorders affecting well-understood biochemical pathways, and many have been studied extensively. They noted that sensitivity and specificity of sequence-based detection of IEMs can be directly compared to those of current MS/MS screening. The study was published on August 10, 2020 in the journal Nature Medicine.
Related Links:
University of California Berkeley
Latest Molecular Diagnostics News
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
Channels
Clinical Chemistry
view channel
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read more
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more