Targeted Next-Generation Sequencing Validated for Lysosomal Storage Disorders Diagnosis
By LabMedica International staff writers Posted on 04 May 2020 |

Image: The Invitrogen Qubit 1X dsDNA HS Assay Kit (Photo courtesy of Thermo Fisher Scientific).
Lysosomal storage disorders (LSDs) are a group of more than 50 inherited rare disorders characterized by the accumulation of specific undegraded metabolites in the lysosomes. This overstorage is commonly caused by a deficient or absent activity of one of the many lysosomal hydrolases or, in a few cases, by the deficit of other non-enzymatic lysosomal proteins.
Generally, the diagnostic approach includes an accurate clinical evaluation, which leads to the formulation of a suspicion for one or more LSDs. This is followed by biochemical tests, aimed to detect the storage products in body fluids, whose results may orient the following enzymatic analyses. Finally, if an enzyme deficit is detected, genetic analysis is performed on the suspected gene.
Scientists specializing in LSDs from the University of Padova (Padova, Italy) evaluated an LSD targeted sequencing panel as a tool capable to potentially reverse this classic diagnostic route. The panel includes 50 LSD genes and 230 intronic sequences conserved among 33 placental mammals. For the validation phase, 56 positive controls, 13 biochemically diagnosed patients, and nine undiagnosed patients were analyzed.
The investigators used the Ion AmpliSeq platform (Thermo Fisher Scientific, Waltham, MA; USA) for the design of a panel including the selected genes. DNA library preparation was performed according to the Thermo Fisher Scientific Ion AmpliSeq Library Preparation protocol in combination with the Ion AmpliSeq Library kit version 2.0. After DNA quantification using the Qubit dsDNA HS Assay Kit, the libraries were constructed starting from 10 ng of each DNA sample. The first step of target amplification was performed by using our AmpliSeq LSD-Panel Primer pools. The amplicons were then indexed using the Ion Xpress Barcode Adapters kit and purified using AMPure XP magnetic beads (Beckman Coulter, Inc., Brea, CA, USA).
The team identified disease-causing variants in 66% of the positive control alleles and in 62% of the biochemically diagnosed patients. Three undiagnosed patients were diagnosed. Eight patients undiagnosed by the panel were analyzed by whole exome sequencing: for two of them, the disease-causing variants were identified. Five patients, undiagnosed by both panel and exome analyses, were investigated through array comparative genomic hybridization and one of them was diagnosed. Conserved intronic fragment analysis, performed in cases unresolved by the first-level analysis, evidenced no candidate intronic variants.
The authors concluded that targeted sequencing is an appealing approach to implement routine diagnostic strategy, given its low sequencing costs and short sequencing time. However, a good coverage must be ensured and, when this is not reached, validation by Sanger sequencing needs to be performed on the proband and on the parents as final step, also to exclude the presence of deletions in cases of homozygous variant finding. The study was published in the April 2020 issue of the Journal of Molecular Diagnostics.
Generally, the diagnostic approach includes an accurate clinical evaluation, which leads to the formulation of a suspicion for one or more LSDs. This is followed by biochemical tests, aimed to detect the storage products in body fluids, whose results may orient the following enzymatic analyses. Finally, if an enzyme deficit is detected, genetic analysis is performed on the suspected gene.
Scientists specializing in LSDs from the University of Padova (Padova, Italy) evaluated an LSD targeted sequencing panel as a tool capable to potentially reverse this classic diagnostic route. The panel includes 50 LSD genes and 230 intronic sequences conserved among 33 placental mammals. For the validation phase, 56 positive controls, 13 biochemically diagnosed patients, and nine undiagnosed patients were analyzed.
The investigators used the Ion AmpliSeq platform (Thermo Fisher Scientific, Waltham, MA; USA) for the design of a panel including the selected genes. DNA library preparation was performed according to the Thermo Fisher Scientific Ion AmpliSeq Library Preparation protocol in combination with the Ion AmpliSeq Library kit version 2.0. After DNA quantification using the Qubit dsDNA HS Assay Kit, the libraries were constructed starting from 10 ng of each DNA sample. The first step of target amplification was performed by using our AmpliSeq LSD-Panel Primer pools. The amplicons were then indexed using the Ion Xpress Barcode Adapters kit and purified using AMPure XP magnetic beads (Beckman Coulter, Inc., Brea, CA, USA).
The team identified disease-causing variants in 66% of the positive control alleles and in 62% of the biochemically diagnosed patients. Three undiagnosed patients were diagnosed. Eight patients undiagnosed by the panel were analyzed by whole exome sequencing: for two of them, the disease-causing variants were identified. Five patients, undiagnosed by both panel and exome analyses, were investigated through array comparative genomic hybridization and one of them was diagnosed. Conserved intronic fragment analysis, performed in cases unresolved by the first-level analysis, evidenced no candidate intronic variants.
The authors concluded that targeted sequencing is an appealing approach to implement routine diagnostic strategy, given its low sequencing costs and short sequencing time. However, a good coverage must be ensured and, when this is not reached, validation by Sanger sequencing needs to be performed on the proband and on the parents as final step, also to exclude the presence of deletions in cases of homozygous variant finding. The study was published in the April 2020 issue of the Journal of Molecular Diagnostics.
Latest Pathology News
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more