Semi-Automatic Isoelectric Focusing Evaluated for Apolipoprotein E Phenotyping
By LabMedica International staff writers Posted on 30 Jan 2020 |

Image: The Sebia Hydragel 18 Apo E Isofocusing showing different apoE isoforms from 16 patients tested. The “control serum” provided in the Sebia kit is included in each series, together with two already typed serum samples as internal controls (as an example, E3/E2 and E4/E4) (Photo courtesy of Sorbonne University).
Plasma apolipoprotein E (apoE) mainly arises from liver hepatocytes (75%), but the brain (astrocytes, oligodendrocytes, microglia, astrocytes) also synthesizes apoE found in the cerebrospinal fluid.
ApoE is a major component of lipoproteins which participates in the transport and clearance of lipids. ApoE4 status is a risk factor for Alzheimer’s and other neurodegenerative diseases, whereas apoE2 and also apoE4 increase the risk for cardiovascular disease.
A team of biochemists from the Sorbonne University (Paris, France) collected blood samples from 40 patients in the course of familial hypercholesterolemia screening or mixed dyslipidemia diagnosis. These patients had given their informed consent including genetic determination and APOE genotypes were already determined by Sanger sequencing of a polymerase chain reaction (PCR) fragment encompassing the two polymorphic sites (rs429358 and rs7412).
The scientists used the Hydragel 18 Apo E Isofocusing kit (Sebia, Lisses, France) which is a qualitative kit for detection and identification of the different apoE phenotypes. A ready-to-use agarose gel containing ampholytes (pH gradient: 5–8) is used to perform a semi-automatic electrophoresis on a Sebia Hydrasys 2 Scan, followed by a specific immunofixation with anti-apoE antiserum. The “apoE isofocusing visualization” kit included antiserum diluent, stock solutions of anti-apoE antiserum and peroxidase-labeled antibody, and reagent for revelation (TTF1 and TTF2 developing solutions).
The team reported that the sera from the genotyped patients included in the study allowed them to test the following isoforms: E3/E3 (18 sera), E3/E4 (16 sera), E2/E2 (four sera) and E4/E4 (two sera). All phenotypes tested were 100% concordant to the genetic isoforms, even if all the possible phenotypes are not found in their population. Precision of the technique was verified with the repeatability and the reproducibility tests for the different isoforms, since tests gave similar results. In addition, the reproducibility tests led them to perform three freezing-thawing cycles on serum samples and a 100% concordant interpretation with genotyping was maintained. There was no interference of hemolysis, glucose or hypertriglyceridemia at the respective concentrations of 45.3 μmol/L hemoglobin, 25.1 mmol/L glucose and 9.5 and 4.8 mmol/L triglycerides for the determination of the phenotype profile.
The authors concluded that this qualitative, semi-automatized method could yield a novel and simple tool to phenotype apoE isoforms. Validated on a cohort of patient samples with known genotype, it could be used either for screening and stratification of a patient cohort, or for clinical analysis when genetic material cannot be obtained. It could be a useful and supplementary tool helping the clinician in the diagnosis of dyslipidemic and neurodegenerative diseases. The study was published in the January 2020 issue of the journal Practical Laboratory Medicine.
Related Links:
Sorbonne University
Sebia
ApoE is a major component of lipoproteins which participates in the transport and clearance of lipids. ApoE4 status is a risk factor for Alzheimer’s and other neurodegenerative diseases, whereas apoE2 and also apoE4 increase the risk for cardiovascular disease.
A team of biochemists from the Sorbonne University (Paris, France) collected blood samples from 40 patients in the course of familial hypercholesterolemia screening or mixed dyslipidemia diagnosis. These patients had given their informed consent including genetic determination and APOE genotypes were already determined by Sanger sequencing of a polymerase chain reaction (PCR) fragment encompassing the two polymorphic sites (rs429358 and rs7412).
The scientists used the Hydragel 18 Apo E Isofocusing kit (Sebia, Lisses, France) which is a qualitative kit for detection and identification of the different apoE phenotypes. A ready-to-use agarose gel containing ampholytes (pH gradient: 5–8) is used to perform a semi-automatic electrophoresis on a Sebia Hydrasys 2 Scan, followed by a specific immunofixation with anti-apoE antiserum. The “apoE isofocusing visualization” kit included antiserum diluent, stock solutions of anti-apoE antiserum and peroxidase-labeled antibody, and reagent for revelation (TTF1 and TTF2 developing solutions).
The team reported that the sera from the genotyped patients included in the study allowed them to test the following isoforms: E3/E3 (18 sera), E3/E4 (16 sera), E2/E2 (four sera) and E4/E4 (two sera). All phenotypes tested were 100% concordant to the genetic isoforms, even if all the possible phenotypes are not found in their population. Precision of the technique was verified with the repeatability and the reproducibility tests for the different isoforms, since tests gave similar results. In addition, the reproducibility tests led them to perform three freezing-thawing cycles on serum samples and a 100% concordant interpretation with genotyping was maintained. There was no interference of hemolysis, glucose or hypertriglyceridemia at the respective concentrations of 45.3 μmol/L hemoglobin, 25.1 mmol/L glucose and 9.5 and 4.8 mmol/L triglycerides for the determination of the phenotype profile.
The authors concluded that this qualitative, semi-automatized method could yield a novel and simple tool to phenotype apoE isoforms. Validated on a cohort of patient samples with known genotype, it could be used either for screening and stratification of a patient cohort, or for clinical analysis when genetic material cannot be obtained. It could be a useful and supplementary tool helping the clinician in the diagnosis of dyslipidemic and neurodegenerative diseases. The study was published in the January 2020 issue of the journal Practical Laboratory Medicine.
Related Links:
Sorbonne University
Sebia
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Molecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more