Next Generation Glycated Hemoglobin Assay Evaluated
By LabMedica International staff writers Posted on 26 Nov 2019 |

Image: The cobas c 513 analyzer is a dedicated high throughput HbA1c analyzer designed to meet efficiency, throughput and accuracy needs for HbA1c laboratory testing (Photo courtesy of Roche Diagnostics)
Diabetes mellitus is a pathological condition that affects all age groups worldwide. The percentage of glycated hemoglobin A1C (HbA1C) reflects the mean plasma glucose level over the previous 3 to 4 months for most individuals and can be used to diagnose type 2 diabetes.
Immunoassay has become an accepted approach for the measurement of HbA1C. Following the on-board detergent-induced lysis of whole blood samples, the amount of HbA1C is quantified by the binding of an antibody to HbA molecules that are glycated at the N-terminus of their β-chain. This amount is compared to the total concentration of Hb in the sample determined by absorbance values and a percent HbA1C is calculated.
Medical Laboratorians at the University of Calgary (Calgary, AB, Canada) and their associates evaluated the performance characteristics of the Roche Cobas c 513 (Roche Diagnostics, Basel, Switzerland), a stand-alone next generation immunoassay analyzer for HbA1C. They assessed the imprecision, accuracy, analytical measuring range, and throughput of this instrument. Method comparisons studies were performed against a previous generation immunoassay analyzer (Roche Integra 800 CTS). They also studied the effects of erythrocyte sedimentation and potential interference from hemoglobin variants.
The method comparison of the c 513 whole blood or hemolysate application to the Integra 800 CTS assay was performed using 40 fresh EDTA whole blood samples distributed across the reportable range of the HbA1c assay retrieved after routine measurement. The effect of sedimentation of whole blood samples on the measurement of %HbA1C was investigated by re-assaying 30 unmixed samples 24 hours after the initial mixing. These samples ranged from 4.5-15.5 %HbA1C (median value, 11.9 %HbA1C). The effect of potentially interfering hemoglobin variants on the HbA1C measurement was investigated by assaying patient samples (N = 6–36) containing heterozygous HbS, HbC, HbE, HbD, or HbJ or elevated levels of HbF (6.8–29.9%) on the c 513, Integra 800 CTS, and Variant II Turbo 2.0 (Bio-Rad, Hercules, CA, USA).
The scientists reported that the within-run and between-run precisions were 0.5–0.7 and 0.8–1.3%CV, respectively. An average bias of -1.6% to proficiency survey samples was observed. The c 513 correlated well with the Integra (slope = 0.94, y-intercept = 0.50, and correlation coefficient = 0.998). The effect of hemoglobin variants on this assay was negligible while specimens containing ≥10% HbF demonstrated a negative bias. The c 513 instrument can process up to 340 samples per hour.
The authors concluded that their data supports the routine use of the c 513 for %HbA1C quantification by the clinical laboratory. The assay is precise and accurate and the instrument is capable of testing of more than 7,500 specimens in 24 hours. While care must be taken to ensure correct sample processing is followed, this instrument is a good solution for large references laboratories with HbA1C volumes of 1,500 per day or higher. The c 513 is a precise, accurate, automated high throughput analyzer for measuring HbA1C in large laboratories. The study was published on November 9, 2019 in the journal Practical Laboratory Medicine.
Related Links:
University of Calgary
Roche Diagnostics
Bio-Rad
Immunoassay has become an accepted approach for the measurement of HbA1C. Following the on-board detergent-induced lysis of whole blood samples, the amount of HbA1C is quantified by the binding of an antibody to HbA molecules that are glycated at the N-terminus of their β-chain. This amount is compared to the total concentration of Hb in the sample determined by absorbance values and a percent HbA1C is calculated.
Medical Laboratorians at the University of Calgary (Calgary, AB, Canada) and their associates evaluated the performance characteristics of the Roche Cobas c 513 (Roche Diagnostics, Basel, Switzerland), a stand-alone next generation immunoassay analyzer for HbA1C. They assessed the imprecision, accuracy, analytical measuring range, and throughput of this instrument. Method comparisons studies were performed against a previous generation immunoassay analyzer (Roche Integra 800 CTS). They also studied the effects of erythrocyte sedimentation and potential interference from hemoglobin variants.
The method comparison of the c 513 whole blood or hemolysate application to the Integra 800 CTS assay was performed using 40 fresh EDTA whole blood samples distributed across the reportable range of the HbA1c assay retrieved after routine measurement. The effect of sedimentation of whole blood samples on the measurement of %HbA1C was investigated by re-assaying 30 unmixed samples 24 hours after the initial mixing. These samples ranged from 4.5-15.5 %HbA1C (median value, 11.9 %HbA1C). The effect of potentially interfering hemoglobin variants on the HbA1C measurement was investigated by assaying patient samples (N = 6–36) containing heterozygous HbS, HbC, HbE, HbD, or HbJ or elevated levels of HbF (6.8–29.9%) on the c 513, Integra 800 CTS, and Variant II Turbo 2.0 (Bio-Rad, Hercules, CA, USA).
The scientists reported that the within-run and between-run precisions were 0.5–0.7 and 0.8–1.3%CV, respectively. An average bias of -1.6% to proficiency survey samples was observed. The c 513 correlated well with the Integra (slope = 0.94, y-intercept = 0.50, and correlation coefficient = 0.998). The effect of hemoglobin variants on this assay was negligible while specimens containing ≥10% HbF demonstrated a negative bias. The c 513 instrument can process up to 340 samples per hour.
The authors concluded that their data supports the routine use of the c 513 for %HbA1C quantification by the clinical laboratory. The assay is precise and accurate and the instrument is capable of testing of more than 7,500 specimens in 24 hours. While care must be taken to ensure correct sample processing is followed, this instrument is a good solution for large references laboratories with HbA1C volumes of 1,500 per day or higher. The c 513 is a precise, accurate, automated high throughput analyzer for measuring HbA1C in large laboratories. The study was published on November 9, 2019 in the journal Practical Laboratory Medicine.
Related Links:
University of Calgary
Roche Diagnostics
Bio-Rad
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Molecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more