Trial Finds High Analytical Performance in Whole-Genome Sequencing
By LabMedica International staff writers Posted on 26 Oct 2019 |

Image: TruSeq DNA PCR-Free Kits: all-inclusive whole-genome sequencing (WGS) library preparation that provides accurate and comprehensive coverage of complex genomes (Photo courtesy of Illumina).
Genetic diseases are a leading cause of infant mortality particularly among infants admitted to neonatal, pediatric, and cardiovascular intensive care units (ICUs). Disease progression can be extremely rapid in infants, necessitating early etiologic diagnosis in order to inform interventions that can lessen suffering, morbidity, and mortality.
Timely diagnosis requires genome-scale testing since more than 14,000 simple genetic diseases have been described and their presentations often overlap in seriously ill infants. Examples include seizures, respiratory and cardiac failure, hypotonia, hypoglycemia, and jaundice. Whole-genome sequencing can be a viable first-line diagnostic testing option, according to a recent trial.
Scientists at the Rady Children's Institute for Genomic Medicine (San Diego, CA, USA) sought to enroll a greater range of infants, as compared to previous efforts. In the past, clinical sequencing studies focused on infants in intensive care units with unknown, but suspected genetic diseases. Here, the team used broader inclusion criteria, but did, for instance, exclude infants for whom it was thought unlikely that a genetic diagnosis would change their clinical management or who had sepsis but were responding to therapy normally. In all, 213 infants were enrolled in the study.
Eleven percent of these infants were too ill to undergo randomization and instead received ultra-rapid whole-genome sequencing, as that approach would provide the fastest possible route to diagnosis. Of the remaining 189 infants, 95 were randomized to receive whole-exome sequencing and 94 to whole-genome sequencing. They underwent sequencing within 96 hours of their admission to the neonatal ICU (NICU).
Trio EDTA-blood samples were obtained where possible and all samples were sequenced upon receipt. Genomic DNA was isolated with an EZ1 Advanced XL robot and the EZ1 DSP DNA Blood kit. DNA quality was assessed with an assay kit using the Gemini EM Microplate Reader. Genomic DNA was fragmented by sonication, and bar-coded, paired-end, PCR-free libraries were prepared for rWGS with TruSeq DNA LT kits or Hyper kits.
Both whole-genome and whole-exome sequencing had similar diagnostic rates, 19% and 20%, respectively. The time to diagnosis was also similar for the two groups, about 12 days. However, the scientists contended that the difference in the proportion of diseases diagnosed by whole-exome and whole-genome sequencing will likely change as experts' ability to interpret the pathogenicity of noncoding and structural variation improves. As it stands now, interpretation is largely confined to coding variation. Ultra-rapid whole-genome sequencing (urWGS) meanwhile, had a diagnostic rate of 46% and a median time to diagnosis of 2.3 days, which indicated to the investigators that it could be valuable as a first-tier test.
The authors concluded that rapid genomic sequencing can be performed as a first-tier diagnostic test in infants with diseases of unknown etiology at time of admission to regional ICUs. In unstable infants and those in whom a genetic diagnosis was likely to impact immediate management, urWGS had optimal analytic and diagnostic performance, by virtue of shortest time to result. The study was published on October 3, 2019, in the American Journal of Human Genetics.
Related Links:
Rady Children's Institute for Genomic Medicine
Timely diagnosis requires genome-scale testing since more than 14,000 simple genetic diseases have been described and their presentations often overlap in seriously ill infants. Examples include seizures, respiratory and cardiac failure, hypotonia, hypoglycemia, and jaundice. Whole-genome sequencing can be a viable first-line diagnostic testing option, according to a recent trial.
Scientists at the Rady Children's Institute for Genomic Medicine (San Diego, CA, USA) sought to enroll a greater range of infants, as compared to previous efforts. In the past, clinical sequencing studies focused on infants in intensive care units with unknown, but suspected genetic diseases. Here, the team used broader inclusion criteria, but did, for instance, exclude infants for whom it was thought unlikely that a genetic diagnosis would change their clinical management or who had sepsis but were responding to therapy normally. In all, 213 infants were enrolled in the study.
Eleven percent of these infants were too ill to undergo randomization and instead received ultra-rapid whole-genome sequencing, as that approach would provide the fastest possible route to diagnosis. Of the remaining 189 infants, 95 were randomized to receive whole-exome sequencing and 94 to whole-genome sequencing. They underwent sequencing within 96 hours of their admission to the neonatal ICU (NICU).
Trio EDTA-blood samples were obtained where possible and all samples were sequenced upon receipt. Genomic DNA was isolated with an EZ1 Advanced XL robot and the EZ1 DSP DNA Blood kit. DNA quality was assessed with an assay kit using the Gemini EM Microplate Reader. Genomic DNA was fragmented by sonication, and bar-coded, paired-end, PCR-free libraries were prepared for rWGS with TruSeq DNA LT kits or Hyper kits.
Both whole-genome and whole-exome sequencing had similar diagnostic rates, 19% and 20%, respectively. The time to diagnosis was also similar for the two groups, about 12 days. However, the scientists contended that the difference in the proportion of diseases diagnosed by whole-exome and whole-genome sequencing will likely change as experts' ability to interpret the pathogenicity of noncoding and structural variation improves. As it stands now, interpretation is largely confined to coding variation. Ultra-rapid whole-genome sequencing (urWGS) meanwhile, had a diagnostic rate of 46% and a median time to diagnosis of 2.3 days, which indicated to the investigators that it could be valuable as a first-tier test.
The authors concluded that rapid genomic sequencing can be performed as a first-tier diagnostic test in infants with diseases of unknown etiology at time of admission to regional ICUs. In unstable infants and those in whom a genetic diagnosis was likely to impact immediate management, urWGS had optimal analytic and diagnostic performance, by virtue of shortest time to result. The study was published on October 3, 2019, in the American Journal of Human Genetics.
Related Links:
Rady Children's Institute for Genomic Medicine
Latest Molecular Diagnostics News
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more