LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Trial Finds High Analytical Performance in Whole-Genome Sequencing

By LabMedica International staff writers
Posted on 26 Oct 2019
Print article
Image: TruSeq DNA PCR-Free Kits: all-inclusive whole-genome sequencing (WGS) library preparation that provides accurate and comprehensive coverage of complex genomes (Photo courtesy of Illumina).
Image: TruSeq DNA PCR-Free Kits: all-inclusive whole-genome sequencing (WGS) library preparation that provides accurate and comprehensive coverage of complex genomes (Photo courtesy of Illumina).
Genetic diseases are a leading cause of infant mortality particularly among infants admitted to neonatal, pediatric, and cardiovascular intensive care units (ICUs). Disease progression can be extremely rapid in infants, necessitating early etiologic diagnosis in order to inform interventions that can lessen suffering, morbidity, and mortality.

Timely diagnosis requires genome-scale testing since more than 14,000 simple genetic diseases have been described and their presentations often overlap in seriously ill infants. Examples include seizures, respiratory and cardiac failure, hypotonia, hypoglycemia, and jaundice. Whole-genome sequencing can be a viable first-line diagnostic testing option, according to a recent trial.

Scientists at the Rady Children's Institute for Genomic Medicine (San Diego, CA, USA) sought to enroll a greater range of infants, as compared to previous efforts. In the past, clinical sequencing studies focused on infants in intensive care units with unknown, but suspected genetic diseases. Here, the team used broader inclusion criteria, but did, for instance, exclude infants for whom it was thought unlikely that a genetic diagnosis would change their clinical management or who had sepsis but were responding to therapy normally. In all, 213 infants were enrolled in the study.

Eleven percent of these infants were too ill to undergo randomization and instead received ultra-rapid whole-genome sequencing, as that approach would provide the fastest possible route to diagnosis. Of the remaining 189 infants, 95 were randomized to receive whole-exome sequencing and 94 to whole-genome sequencing. They underwent sequencing within 96 hours of their admission to the neonatal ICU (NICU).

Trio EDTA-blood samples were obtained where possible and all samples were sequenced upon receipt. Genomic DNA was isolated with an EZ1 Advanced XL robot and the EZ1 DSP DNA Blood kit. DNA quality was assessed with an assay kit using the Gemini EM Microplate Reader. Genomic DNA was fragmented by sonication, and bar-coded, paired-end, PCR-free libraries were prepared for rWGS with TruSeq DNA LT kits or Hyper kits.

Both whole-genome and whole-exome sequencing had similar diagnostic rates, 19% and 20%, respectively. The time to diagnosis was also similar for the two groups, about 12 days. However, the scientists contended that the difference in the proportion of diseases diagnosed by whole-exome and whole-genome sequencing will likely change as experts' ability to interpret the pathogenicity of noncoding and structural variation improves. As it stands now, interpretation is largely confined to coding variation. Ultra-rapid whole-genome sequencing (urWGS) meanwhile, had a diagnostic rate of 46% and a median time to diagnosis of 2.3 days, which indicated to the investigators that it could be valuable as a first-tier test.

The authors concluded that rapid genomic sequencing can be performed as a first-tier diagnostic test in infants with diseases of unknown etiology at time of admission to regional ICUs. In unstable infants and those in whom a genetic diagnosis was likely to impact immediate management, urWGS had optimal analytic and diagnostic performance, by virtue of shortest time to result. The study was published on October 3, 2019, in the American Journal of Human Genetics.

Related Links:
Rady Children's Institute for Genomic Medicine

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.