We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mouse Biomarker Predicts Lethality of Human Prostate Cancer

By LabMedica International staff writers
Posted on 30 Jan 2019
Image: A micrograph of prostate adenocarcinoma, acinar type, the most common type of prostate cancer (Photo courtesy of Wikimedia Commons).
Image: A micrograph of prostate adenocarcinoma, acinar type, the most common type of prostate cancer (Photo courtesy of Wikimedia Commons).
Researchers have demonstrated the relevance of a prostate cancer biomarker found in a genetically engineered mouse model to the diagnosis and monitoring of the progress of the disease in humans.

Investigators at Rutgers University (New Brunswick, NJ, USA) reported in the December 5, 2018, online edition of the journal Nature Communications that they had elucidated cell-intrinsic drivers of metastatic prostate cancer progression through analyses of genetically engineered mouse models (GEMM) and correlative studies of human prostate cancer. Expression profiling of lineage-marked cells from mouse primary tumors and metastases defined a signature of de novo metastatic progression.

Cross-species master regulator analyses comparing this mouse signature with a comparable human signature identified conserved drivers of metastatic progression with demonstrable clinical and functional relevance. In particular, nuclear receptor binding SET Domain Protein 2 (NSD2) was robustly expressed in lethal prostate cancer in humans, while its silencing inhibited metastasis of tumor transplants in mice.

These findings suggested that cross-species investigations based on analyses of de novo metastasis in GEMMs could be broadly used to elucidate mechanisms of metastatic progression and identify potential new therapeutic opportunities for treatment of lethal cancer.

"Currently, when a patient is diagnosed with prostate cancer, physicians can determine how advanced a tumor is but not whether the patients' cancer will spread," said contributing author Dr. Antonina Mitrofanova, assistant professor of biomedical and health informatics at Rutgers University. "If we can determine whether a patient's cancer is likely to spread at the time of diagnosis, we can start them on a targeted treatment plan as soon as possible to decrease the likelihood of their cancer spreading."

Related Links:
Rutgers University

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
GLOBE SCIENTIFIC, LLC