We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Banna Virus Detected by Reverse Transcription-Loop-Mediated Isothermal Amplification

By LabMedica International staff writers
Posted on 25 Dec 2018
Print article
Image: Visual detection of RT-LAMP assay. The tubes represent BAV strains and the negative controls used in the visual inspection. 1-7, BAV strains; 8-13, other viruses; 14, negative control (Photo courtesy of Wuhan Institute of Virology).
Image: Visual detection of RT-LAMP assay. The tubes represent BAV strains and the negative controls used in the visual inspection. 1-7, BAV strains; 8-13, other viruses; 14, negative control (Photo courtesy of Wuhan Institute of Virology).
Banna virus (BAV) has been isolated from a diverse group of vertebrates and invertebrates, including mosquitos, ticks, midges, cattle, and pigs from different regions in China, Vietnam, and Indonesia. BAV is considered to be an emerging pathogen that can result in human infections with possible manifestation of fever and viral encephalitis.

Reverse transcription-loop mediated isothermal amplification (RT-LAMP) is a nucleic acid amplification approach that amplifies reverse transcribed DNA from RNA using strand displacement DNA polymerase under isothermal conditions. Due to its rapidness, simplicity, sensitivity and specificity, RT-LAMP has been successfully applied in the detection of various RNA viruses.

Scientists at the Wuhan Institute of Virology (Wuhan, China) designed a set of six specific primers to target the segment 12 of BAV, and the reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR) method. The team used various cells and spiked samples to test the RT-LAMP method.

In running the RT-LAMP assay, a DEAOU RNA Amplification Kit (RT-LAMP) was used. One step RT-PCR amplification for BAV was performed using Prime Script One Step RT-PCR Kit Ver.2. RNA was extracted from 140 μL of BAV-infected C6/36 cell culture supernatant, BAV-spiked human serum or filtered mosquito homogenate samples using the QIAamp Viral RNA Mini Kit.

The team reported that the amplification of the RT-LAMP assay can be obtained within 40 minutes at 65 °C. The results from specificity showed that only target BAVs RNA including genotypes A, B and C were amplified and the assay demonstrated a sensitivity of 3.6 × 10−2 PFU/mL, which was higher than conventional RT-PCR measurement. A good reliability for the assay was presented in the further evaluation for BAVs RNA from serial diluted BAV-spiked serum and 47 pools of field mosquito samples.

The authors concluded that they had successfully developed a RT-LAMP assay for the detection of BAV, which provides a potential new molecular diagnostic test for BAV that could be applied in the field or clinic in the future, and that may contribute to the preparedness for future outbreaks of a BAV endemic, especially for regions with limited resources available. The study was published online on November 2, 2018, in the International Journal of Infectious Diseases.

Related Links:
Wuhan Institute of Virology

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.