Molecular and Classical Methods Compared for Leprosy Diagnosis
By LabMedica International staff writers Posted on 27 Sep 2018 |

Image: Auramine O stained Mycobacterium leprae in FFPE tissue section under ×40 objective of light-emitting diode fluorescence microscope A: Sample with high BI; B. Sample with low BI (Photo courtesy of Armauer Hansen Research Institute).
Mycobacterium leprae is the causative agent of leprosy, a chronic granulomatous infectious disease affecting the skin and peripheral nerves. Leprosy manifests in various forms based on the immunological profiles and bacterial load in patients.
The diagnosis of leprosy mainly relies on clinical examination due to the inconsistent sensitivity and poor reproducibility of the current laboratory tests. Utilization of alternative methods to the standard Ziehl Neelsen (ZN), Fite-Faraco (FF) and Haematoxylin and Eosin (H&E) staining procedures may eventually improve leprosy diagnosis.
Ethiopian and Swiss scientists working at the Armauer Hansen Research Institute (Addis Ababa, Ethiopia) enrolled a total of 141 leprosy cases comprising 136 newly diagnosed treatment naïve and five relapse leprosy patients with any form of the disease in a prospective comparative cross-sectional study at the ALERT center from January 2015 to April 2016.
The team compared the performance of the fluorescent Auramine O (AO) staining and polymerase chain reaction (PCR) with different skin samples using a combination of ZN, FF and H&E staining as the gold standard. AO, ZN, FF, H&E and PCR tests were performed on slit skin smears (SSS). DNA was extracted from punch biopsies using two different methods with or without mechanical lysis. Punch biopsies in 10% formalin were kept for 48–72 hours before tissue processing was performed overnight using an automated tissue processor ASP 300S.
The team reported that the sensitivities were 87.6%, 59.3% and 77% for H&E, ZN and FF, respectively, whereas it reached 65.5% and 77.9% for AO in SSS and tissue sections and 91.1% for PCR in tissue samples. Moreover, samples with low bacillary index, sensitivity of AO staining (61.8%) was similar to FF (60%) and lower than PCR (86.6%). Sensitivity of PCR also increased (96.8%) when mechanical lysis was used during DNA extraction compared to enzymatic treatment alone (84.6%).
The authors concluded that their results showed that for diagnostic purposes, analysis of skin section is more sensitive than SSS, especially for samples with low bacillary load. AO staining on SSS and tissue sections was not significantly better than other routine diagnostic tests but considerably more user friendly. The sensitivity of PCR was higher than current standard methods and increased when combined with more efficient DNA extraction using mechanical and chemical lysis. They recommend AO staining for the diagnosis of leprosy in lower health facilities such as health centers and district hospitals and PCR diagnosis at referral level and research centers. The study was published on September 4, 2018, in the journal PLoS Neglected Tropical Diseases.
Related Links:
Armauer Hansen Research Institute
The diagnosis of leprosy mainly relies on clinical examination due to the inconsistent sensitivity and poor reproducibility of the current laboratory tests. Utilization of alternative methods to the standard Ziehl Neelsen (ZN), Fite-Faraco (FF) and Haematoxylin and Eosin (H&E) staining procedures may eventually improve leprosy diagnosis.
Ethiopian and Swiss scientists working at the Armauer Hansen Research Institute (Addis Ababa, Ethiopia) enrolled a total of 141 leprosy cases comprising 136 newly diagnosed treatment naïve and five relapse leprosy patients with any form of the disease in a prospective comparative cross-sectional study at the ALERT center from January 2015 to April 2016.
The team compared the performance of the fluorescent Auramine O (AO) staining and polymerase chain reaction (PCR) with different skin samples using a combination of ZN, FF and H&E staining as the gold standard. AO, ZN, FF, H&E and PCR tests were performed on slit skin smears (SSS). DNA was extracted from punch biopsies using two different methods with or without mechanical lysis. Punch biopsies in 10% formalin were kept for 48–72 hours before tissue processing was performed overnight using an automated tissue processor ASP 300S.
The team reported that the sensitivities were 87.6%, 59.3% and 77% for H&E, ZN and FF, respectively, whereas it reached 65.5% and 77.9% for AO in SSS and tissue sections and 91.1% for PCR in tissue samples. Moreover, samples with low bacillary index, sensitivity of AO staining (61.8%) was similar to FF (60%) and lower than PCR (86.6%). Sensitivity of PCR also increased (96.8%) when mechanical lysis was used during DNA extraction compared to enzymatic treatment alone (84.6%).
The authors concluded that their results showed that for diagnostic purposes, analysis of skin section is more sensitive than SSS, especially for samples with low bacillary load. AO staining on SSS and tissue sections was not significantly better than other routine diagnostic tests but considerably more user friendly. The sensitivity of PCR was higher than current standard methods and increased when combined with more efficient DNA extraction using mechanical and chemical lysis. They recommend AO staining for the diagnosis of leprosy in lower health facilities such as health centers and district hospitals and PCR diagnosis at referral level and research centers. The study was published on September 4, 2018, in the journal PLoS Neglected Tropical Diseases.
Related Links:
Armauer Hansen Research Institute
Latest Microbiology News
- Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more