Biochemical Changes in Stored Donor Units Analyzed
By LabMedica International staff writers Posted on 12 Jul 2018 |

Image: The HumaStar 80 clinical chemistry analyzer (Photo courtesy of Human Diagnostics).
Blood transfusion with allogeneic blood products is a common medical intervention to treat anemia or prepare patients for surgical procedures and generally, the blood units are secured and stored prior to expected transfusion.
During storage, several physical and biochemical changes take place in blood products that await transfusion, and the most affected product is whole blood. These changes known collectively as red cell storage lesion are progressive events that affect blood products stored for longer period than products stored for a short period.
Medical Laboratory Scientists at Mbarara University of Science and Technology (Mbarara, Uganda) recruited consecutively a total of 200 blood recipients were categorized into two study arms: group I of 100 received fresh blood and 100 in group II received old blood. A total of 2 mL of venous blood was collected from each participant in EDTA tubes before transfusion for pre-transfusion hemoglobin (Hb) estimation and after transfusion for post-transfusion Hb estimation. Each cross-matched unit was sampled to collect plasma for pH, lactate and potassium assays.
The Hb level was estimated using a Beckman Coulter Diagnostics full hemogram machine; donor lactate level was determined using HumaStar 80; and the potassium and pH in the donor units were determined by Human Diagnostics’ HumaLyte assays. Donor units were cultured in blood agar medium and incubated for 24 hours at 37 °C.
The team reported that the pH of the stored blood dropped from 7.4 to 7.2 in the first three days to ~7.0 by day 11 and to <7.0 by day 35. The mean rise in lactate level was 25 g/dL in blood stored for 0 to 11 days and 32.4 g/dL in blood stored for 21 to 35 days. The highest increase was encountered in blood stored beyond 28 days: 40–57 g/dL by 35 days. Potassium levels equally increased from ~4.6 mmol/L in the first five days of storage to ~14.3 mmol/L by 11 days. From the third week of blood storage and beyond, there was exponential increase in potassium levels, with the highest record in blood units stored from 30 to 35 days.
The authors concluded that whole blood stored for more than 14 days has reduced efficacy with increased markers of red cell storage lesion such as increased potassium level, lactate and fall in pH and these lesions increase the length of hospital stay. The study was published on June 25, 2018, in the Journal of Blood Medicine.
Related Links:
Mbarara University of Science and Technology
During storage, several physical and biochemical changes take place in blood products that await transfusion, and the most affected product is whole blood. These changes known collectively as red cell storage lesion are progressive events that affect blood products stored for longer period than products stored for a short period.
Medical Laboratory Scientists at Mbarara University of Science and Technology (Mbarara, Uganda) recruited consecutively a total of 200 blood recipients were categorized into two study arms: group I of 100 received fresh blood and 100 in group II received old blood. A total of 2 mL of venous blood was collected from each participant in EDTA tubes before transfusion for pre-transfusion hemoglobin (Hb) estimation and after transfusion for post-transfusion Hb estimation. Each cross-matched unit was sampled to collect plasma for pH, lactate and potassium assays.
The Hb level was estimated using a Beckman Coulter Diagnostics full hemogram machine; donor lactate level was determined using HumaStar 80; and the potassium and pH in the donor units were determined by Human Diagnostics’ HumaLyte assays. Donor units were cultured in blood agar medium and incubated for 24 hours at 37 °C.
The team reported that the pH of the stored blood dropped from 7.4 to 7.2 in the first three days to ~7.0 by day 11 and to <7.0 by day 35. The mean rise in lactate level was 25 g/dL in blood stored for 0 to 11 days and 32.4 g/dL in blood stored for 21 to 35 days. The highest increase was encountered in blood stored beyond 28 days: 40–57 g/dL by 35 days. Potassium levels equally increased from ~4.6 mmol/L in the first five days of storage to ~14.3 mmol/L by 11 days. From the third week of blood storage and beyond, there was exponential increase in potassium levels, with the highest record in blood units stored from 30 to 35 days.
The authors concluded that whole blood stored for more than 14 days has reduced efficacy with increased markers of red cell storage lesion such as increased potassium level, lactate and fall in pH and these lesions increase the length of hospital stay. The study was published on June 25, 2018, in the Journal of Blood Medicine.
Related Links:
Mbarara University of Science and Technology
Latest Clinical Chem. News
- AI-Powered Blood Test Accurately Detects Ovarian Cancer
- Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
- Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Diagnostic Platform Combines Immunoassay and Molecular Testing
An innovative diagnostic platform offers superior sensitivity across all sample types, including blood, compared to existing rapid tests, while maintaining a low-cost, user-friendly design.... Read more
Single Blood Test Could Detect Different Types of Cancer at Early Stages
Currently, reliable screening for only a few types of cancer is available, such as those affecting the breast, bowel, cervix (neck of the womb), and lung for individuals at high risk. While these screenings... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more