New Blood Draw Device Evaluated For Hemolysis
By LabMedica International staff writers Posted on 06 Feb 2018 |

Image: A blood draw using the PIVO device which allows patients to have blood taken multiple times during their hospital stay without having to undergo multiple needle sticks (Photo courtesy of Intermountain Healthcare).
Hemolysis, defined as the breakdown of red blood cells and the release of hemoglobin and intracellular contents into the plasma, is a frequent occurrence in blood samples submitted to clinical laboratories for testing.
Blood collections from peripheral intravenous catheters offer several benefits to patients, including reduced needle punctures and patient discomfort, but they risk reducing the quality of blood specimens analyzed by the laboratory. The estimated prevalence of hemolyzed specimens is approximately 3% of routine samples and they make up approximately 60% of specimens classified as unsuitable for analysis.
A team of medical laboratory scientists led by those at University Hospitals Cleveland Medical Center (Cleveland, OH, USA), in an effort to balance analytical quality of test results with patient-centered care initiatives, a needle-less blood collection device called PIVO (Velano Vascular, San Francisco, CA, USA) was evaluated at two institutions. The primary objective of this study was to assess the ability of the PIVO device to provide high-quality blood specimens for laboratory testing compared to current blood collection methods.
The PIVO blood collection device was used for blood draws from a peripheral intravenous (IV) catheter (PIVC). Prior to the PIVO collection, the IV catheter was flushed with 5 mL normal saline. The PIVO device was attached to the needle-less valve and actuated through the IV catheter into the blood stream. Standard vacuum tubes or a syringe were used at the back end of the device to collect blood samples. The blood collections were typically performed with a tourniquet above the PIVC. A discard volume of 1 mL was collected through PIVO prior to the required specimen collection. After the PIVO collection the device was retracted, removed, and disposed of. The IV catheter was again flushed with 5 mL normal saline.
Specimen integrity was checked by the semi-quantitative, spectrophotometric assessment of hemolysis in human serum and plasma on automated chemistry analyzers. Hemolysis flags were appended to test results when the hemolysis index corresponding to a free hemoglobin concentration of ≥ 50 mg/dL was triggered for blood chemistry test samples requiring an automated specimen integrity check. Approximately 7,600 PIVO blood draws were performed across the two institutions. The hemolysis rates of samples collected with PIVO were evaluated using 2,380 flagged collections, containing approximately 1,200 test orders requiring hemolysis index measurements. The hemolysis rate of PIVO-flagged samples (1.8%) was statistically superior to the venipuncture and central line blood collection methods (3.3%), reducing the risk of hemolysis during a venous blood draw by 39%.
The authors concluded that PIVO collections facilitated improvement in the rate and degree of sample hemolysis when compared to venipuncture and central line blood collections. These findings suggest that PIVO is capable of delivering samples that are superior to current blood collection methods in terms of hemolysis rate as well as reducing the number of invasive venipunctures required for laboratory testing. The study was published on January 4, 2018, in the journal Practical Laboratory Medicine.
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more