We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biosensor Device Developed for Zika Diagnosis

By LabMedica International staff writers
Posted on 21 Aug 2017
Print article
Image: A bioplasmonic paper-based device (BPD) for the detection of Zika virus (ZIKV) infection, via quantification of serum anti-ZIKV-nonstructural protein 1 (NS1) IgG and IgM (Photo courtesy of James Byard).
Image: A bioplasmonic paper-based device (BPD) for the detection of Zika virus (ZIKV) infection, via quantification of serum anti-ZIKV-nonstructural protein 1 (NS1) IgG and IgM (Photo courtesy of James Byard).
A novel plasmonic biosensor-based detection system was developed that can diagnose recent or current Zika virus (ZIKV) infection in 15 minutes or less.

The ongoing Zika virus epidemic demands a response based on rapid, low-cost, and accurate diagnostic tests that can be broadly distributed and applied in pandemic regions. Toward this end, investigators at Washington University (St. Louis, MO, USA) developed an innovative, adaptable, and rapidly deployable bioplasmonic paper-based device (BPD) for the detection of ZIKV infection, via quantification of serum anti-ZIKV-nonstructural protein 1 (NS1) IgG and IgM. BPD is based on ZIKV-NS1 protein as a capture element and gold nanorods as plasmonic nanotransducers.

Plasmonic resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light. In the current study gold nanorods acted as the plasmon resonance transducers.

In the new BPD, the NS1 protein was bound to gold nanorods mounted on a piece of paper that was then coated with protective nanocrystals. The nanocrystals protected the nanorods and allowed them to be stored without refrigeration. To perform the assay, the paper was rinsed with slightly acidic water, removing the protective crystals and exposing the protein mounted on the nanorods. A drop of the patient's blood was applied. If the patient had come into contact with the virus, the blood sample contained immunoglobulins that bound to the Zika virus protein. Binding of immunoglobulins from the blood sample caused the nanorods to undergo a slight color change that could be detected with a hand-held spectrophotometer.

Results of a small clinical study revealed that the BPD displayed excellent sensitivity and selectivity to both anti-ZIKV-NS1 IgG and IgM in human serum. In addition, excellent stability of BPDs at room and even elevated temperature for one month was achieved by the metal–organic framework (MOF)-based biopreservation technique.

"We are taking advantage of the fact that patients mount an immune attack against this viral protein," said senior author Dr. Jeremiah J. Morrissey, research professor of anesthesiology at Washington University. "The immunoglobulins persist in the blood for a few months, and when they come into contact with the gold nanorods, the nanorods undergo a slight color change that can be detected with a hand-held spectrophotometer. With this test, results will be clear before the patient leaves the clinic, allowing immediate counseling and access to treatment."

Details of the BPD were published in the August 10, 2017, online edition of the journal Advanced Biosystems.

Related Links:
Washington University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The study demonstrated that electric-field molecular fingerprinting can probe cancer (Photo courtesy of ACS Central Science, 2025, 10.1021/acscentsci.4c02164)

New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma

Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.