Trehalose Boosts Macrophage Ability to Clear Plaques
|
By LabMedica International staff writers Posted on 22 Jun 2017 |

Image: A photomicrograph of a cross section of a mouse aorta, the main artery in the body, with a large plaque. Straight red lines toward the upper left are the wall of the aorta. Yellow areas are where housekeeping cells called macrophages are clearing cellular waste (Photo courtesy of Ismail Sergin, Washington University School of Medicine).
Cardiovascular disease researchers working with mouse models have found that treatment with the sugar trehalose boosts the activity of the macrophages responsible for clearing the molecular and cellular debris that make up atherosclerotic plaques.
Macrophages specialize in removing lipids and debris present in atherosclerotic plaques. However, as plaques grow, their size and complexity render macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. The decline in the autophagy-lysosome system that contributes to this situation is evidenced by disarray of key autophagy markers in both mouse and human atherosclerotic plaques.
Investigators at Washington University School of Medicine (St. Louis, MO, USA) reported that by boosting the activity of the macrophage protein transcription factor EB (TFEB), they could reverse the autophagy dysfunction of macrophages in plaques. TFEB is known to regulate many lysosomal genes, and by translocating to the cell nucleus, TFEB itself can be activated when the lysosome malfunctions. This serves to regulate both the abundance of lysosomes found in the cell and their ability to degrade complex molecules.
The investigators described in the June 7, 2017, online edition of the journal Nature Communications the ability of the natural sugar trehalose to act as an inducer of macrophage autophagy-lysosomal biogenesis and demonstrated the ability of trehalose to stimulate the plaque clearing properties of macrophage TFEB overexpression.
Trehalose is a non-reducing natural disaccharide (alpha,alpha-1,1-glucoside) synthesized endogenously by non-mammalian organisms such as insects, crustaceans, and certain plants. Present in high concentration in these organisms, trehalose is thought to provide protection against environmental stresses such as osmotic and temperature shocks by stabilizing biomolecules. The pharmaceutical industry uses trehalose as a stabilizer in numerous medicines. In the food industry, trehalose has been used as a sweetener because of its mild sweetness as compared to its other closely related non-reducing disaccharide sucrose. Owing to the ability of trehalose to induce autophagy and ameliorate various protein aggregation neurodegenerative diseases and the finding of TFEB as an autophagy inducer particularly of protein aggregates, the investigators became interested in evaluating the effects of trehalose in the induction of macrophage TFEB, autophagy-lysosomal biogenesis, and atherosclerosis.
Toward this end, they injected mice prone to atherosclerosis with trehalose. Following treatment, these animals displayed reduced plaque in their arteries. The sizes of the plaques measured in the aortic root were variable, but on average, the plaques measured 0.35 square millimeters in control mice compared with 0.25 square millimeters in the mice receiving trehalose, which translated into a roughly 30% decrease in plaque size. The effect disappeared when the mice were given trehalose orally or when they were injected with other types of sugar, even those with similar structures.
"We are interested in enhancing the ability of these immune cells, called macrophages, to degrade cellular garbage - making them super-macrophages," said senior author Dr. Babak Razani, assistant professor of medicine at Washington University School of Medicine. "In atherosclerosis, macrophages try to fix damage to the artery by cleaning up the area, but they get overwhelmed by the inflammatory nature of the plaques. Their housekeeping process gets gummed up. So their friends rush in to try to clean up the bigger mess and also become part of the problem. A soup starts building up - dying cells, more lipids. The plaque grows and grows."
"Trehalose is not just enhancing the housekeeping machinery that is already there," said Dr. Razani. "It is triggering the cell to make new machinery. This results in more autophagy - the cell starts a degradation fest. Is this the only way that trehalose works to enhance autophagy by macrophages? We cannot say that for sure - we are still testing that. But is it a predominant process? Yes."
Related Links:
Washington University School of Medicine
Macrophages specialize in removing lipids and debris present in atherosclerotic plaques. However, as plaques grow, their size and complexity render macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. The decline in the autophagy-lysosome system that contributes to this situation is evidenced by disarray of key autophagy markers in both mouse and human atherosclerotic plaques.
Investigators at Washington University School of Medicine (St. Louis, MO, USA) reported that by boosting the activity of the macrophage protein transcription factor EB (TFEB), they could reverse the autophagy dysfunction of macrophages in plaques. TFEB is known to regulate many lysosomal genes, and by translocating to the cell nucleus, TFEB itself can be activated when the lysosome malfunctions. This serves to regulate both the abundance of lysosomes found in the cell and their ability to degrade complex molecules.
The investigators described in the June 7, 2017, online edition of the journal Nature Communications the ability of the natural sugar trehalose to act as an inducer of macrophage autophagy-lysosomal biogenesis and demonstrated the ability of trehalose to stimulate the plaque clearing properties of macrophage TFEB overexpression.
Trehalose is a non-reducing natural disaccharide (alpha,alpha-1,1-glucoside) synthesized endogenously by non-mammalian organisms such as insects, crustaceans, and certain plants. Present in high concentration in these organisms, trehalose is thought to provide protection against environmental stresses such as osmotic and temperature shocks by stabilizing biomolecules. The pharmaceutical industry uses trehalose as a stabilizer in numerous medicines. In the food industry, trehalose has been used as a sweetener because of its mild sweetness as compared to its other closely related non-reducing disaccharide sucrose. Owing to the ability of trehalose to induce autophagy and ameliorate various protein aggregation neurodegenerative diseases and the finding of TFEB as an autophagy inducer particularly of protein aggregates, the investigators became interested in evaluating the effects of trehalose in the induction of macrophage TFEB, autophagy-lysosomal biogenesis, and atherosclerosis.
Toward this end, they injected mice prone to atherosclerosis with trehalose. Following treatment, these animals displayed reduced plaque in their arteries. The sizes of the plaques measured in the aortic root were variable, but on average, the plaques measured 0.35 square millimeters in control mice compared with 0.25 square millimeters in the mice receiving trehalose, which translated into a roughly 30% decrease in plaque size. The effect disappeared when the mice were given trehalose orally or when they were injected with other types of sugar, even those with similar structures.
"We are interested in enhancing the ability of these immune cells, called macrophages, to degrade cellular garbage - making them super-macrophages," said senior author Dr. Babak Razani, assistant professor of medicine at Washington University School of Medicine. "In atherosclerosis, macrophages try to fix damage to the artery by cleaning up the area, but they get overwhelmed by the inflammatory nature of the plaques. Their housekeeping process gets gummed up. So their friends rush in to try to clean up the bigger mess and also become part of the problem. A soup starts building up - dying cells, more lipids. The plaque grows and grows."
"Trehalose is not just enhancing the housekeeping machinery that is already there," said Dr. Razani. "It is triggering the cell to make new machinery. This results in more autophagy - the cell starts a degradation fest. Is this the only way that trehalose works to enhance autophagy by macrophages? We cannot say that for sure - we are still testing that. But is it a predominant process? Yes."
Related Links:
Washington University School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
New Blood Biomarkers Help Diagnose Pregnancy-Linked Liver Complication
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder linked to pregnancy and can pose serious risks for both mother and baby, including premature delivery and stillbirth.... Read more
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read more
Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
Blood-based tests for Alzheimer’s disease are transforming diagnosis by offering a simpler alternative to spinal taps and brain imaging. However, many people evaluated at memory clinics also live with... Read more
Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
Chronic liver disease affects millions worldwide and can progress silently to hepatocellular carcinoma (HCC), one of the deadliest cancers globally. While surveillance guidelines exist for patients with... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








