Trehalose Boosts Macrophage Ability to Clear Plaques
By LabMedica International staff writers Posted on 22 Jun 2017 |

Image: A photomicrograph of a cross section of a mouse aorta, the main artery in the body, with a large plaque. Straight red lines toward the upper left are the wall of the aorta. Yellow areas are where housekeeping cells called macrophages are clearing cellular waste (Photo courtesy of Ismail Sergin, Washington University School of Medicine).
Cardiovascular disease researchers working with mouse models have found that treatment with the sugar trehalose boosts the activity of the macrophages responsible for clearing the molecular and cellular debris that make up atherosclerotic plaques.
Macrophages specialize in removing lipids and debris present in atherosclerotic plaques. However, as plaques grow, their size and complexity render macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. The decline in the autophagy-lysosome system that contributes to this situation is evidenced by disarray of key autophagy markers in both mouse and human atherosclerotic plaques.
Investigators at Washington University School of Medicine (St. Louis, MO, USA) reported that by boosting the activity of the macrophage protein transcription factor EB (TFEB), they could reverse the autophagy dysfunction of macrophages in plaques. TFEB is known to regulate many lysosomal genes, and by translocating to the cell nucleus, TFEB itself can be activated when the lysosome malfunctions. This serves to regulate both the abundance of lysosomes found in the cell and their ability to degrade complex molecules.
The investigators described in the June 7, 2017, online edition of the journal Nature Communications the ability of the natural sugar trehalose to act as an inducer of macrophage autophagy-lysosomal biogenesis and demonstrated the ability of trehalose to stimulate the plaque clearing properties of macrophage TFEB overexpression.
Trehalose is a non-reducing natural disaccharide (alpha,alpha-1,1-glucoside) synthesized endogenously by non-mammalian organisms such as insects, crustaceans, and certain plants. Present in high concentration in these organisms, trehalose is thought to provide protection against environmental stresses such as osmotic and temperature shocks by stabilizing biomolecules. The pharmaceutical industry uses trehalose as a stabilizer in numerous medicines. In the food industry, trehalose has been used as a sweetener because of its mild sweetness as compared to its other closely related non-reducing disaccharide sucrose. Owing to the ability of trehalose to induce autophagy and ameliorate various protein aggregation neurodegenerative diseases and the finding of TFEB as an autophagy inducer particularly of protein aggregates, the investigators became interested in evaluating the effects of trehalose in the induction of macrophage TFEB, autophagy-lysosomal biogenesis, and atherosclerosis.
Toward this end, they injected mice prone to atherosclerosis with trehalose. Following treatment, these animals displayed reduced plaque in their arteries. The sizes of the plaques measured in the aortic root were variable, but on average, the plaques measured 0.35 square millimeters in control mice compared with 0.25 square millimeters in the mice receiving trehalose, which translated into a roughly 30% decrease in plaque size. The effect disappeared when the mice were given trehalose orally or when they were injected with other types of sugar, even those with similar structures.
"We are interested in enhancing the ability of these immune cells, called macrophages, to degrade cellular garbage - making them super-macrophages," said senior author Dr. Babak Razani, assistant professor of medicine at Washington University School of Medicine. "In atherosclerosis, macrophages try to fix damage to the artery by cleaning up the area, but they get overwhelmed by the inflammatory nature of the plaques. Their housekeeping process gets gummed up. So their friends rush in to try to clean up the bigger mess and also become part of the problem. A soup starts building up - dying cells, more lipids. The plaque grows and grows."
"Trehalose is not just enhancing the housekeeping machinery that is already there," said Dr. Razani. "It is triggering the cell to make new machinery. This results in more autophagy - the cell starts a degradation fest. Is this the only way that trehalose works to enhance autophagy by macrophages? We cannot say that for sure - we are still testing that. But is it a predominant process? Yes."
Related Links:
Washington University School of Medicine
Macrophages specialize in removing lipids and debris present in atherosclerotic plaques. However, as plaques grow, their size and complexity render macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. The decline in the autophagy-lysosome system that contributes to this situation is evidenced by disarray of key autophagy markers in both mouse and human atherosclerotic plaques.
Investigators at Washington University School of Medicine (St. Louis, MO, USA) reported that by boosting the activity of the macrophage protein transcription factor EB (TFEB), they could reverse the autophagy dysfunction of macrophages in plaques. TFEB is known to regulate many lysosomal genes, and by translocating to the cell nucleus, TFEB itself can be activated when the lysosome malfunctions. This serves to regulate both the abundance of lysosomes found in the cell and their ability to degrade complex molecules.
The investigators described in the June 7, 2017, online edition of the journal Nature Communications the ability of the natural sugar trehalose to act as an inducer of macrophage autophagy-lysosomal biogenesis and demonstrated the ability of trehalose to stimulate the plaque clearing properties of macrophage TFEB overexpression.
Trehalose is a non-reducing natural disaccharide (alpha,alpha-1,1-glucoside) synthesized endogenously by non-mammalian organisms such as insects, crustaceans, and certain plants. Present in high concentration in these organisms, trehalose is thought to provide protection against environmental stresses such as osmotic and temperature shocks by stabilizing biomolecules. The pharmaceutical industry uses trehalose as a stabilizer in numerous medicines. In the food industry, trehalose has been used as a sweetener because of its mild sweetness as compared to its other closely related non-reducing disaccharide sucrose. Owing to the ability of trehalose to induce autophagy and ameliorate various protein aggregation neurodegenerative diseases and the finding of TFEB as an autophagy inducer particularly of protein aggregates, the investigators became interested in evaluating the effects of trehalose in the induction of macrophage TFEB, autophagy-lysosomal biogenesis, and atherosclerosis.
Toward this end, they injected mice prone to atherosclerosis with trehalose. Following treatment, these animals displayed reduced plaque in their arteries. The sizes of the plaques measured in the aortic root were variable, but on average, the plaques measured 0.35 square millimeters in control mice compared with 0.25 square millimeters in the mice receiving trehalose, which translated into a roughly 30% decrease in plaque size. The effect disappeared when the mice were given trehalose orally or when they were injected with other types of sugar, even those with similar structures.
"We are interested in enhancing the ability of these immune cells, called macrophages, to degrade cellular garbage - making them super-macrophages," said senior author Dr. Babak Razani, assistant professor of medicine at Washington University School of Medicine. "In atherosclerosis, macrophages try to fix damage to the artery by cleaning up the area, but they get overwhelmed by the inflammatory nature of the plaques. Their housekeeping process gets gummed up. So their friends rush in to try to clean up the bigger mess and also become part of the problem. A soup starts building up - dying cells, more lipids. The plaque grows and grows."
"Trehalose is not just enhancing the housekeeping machinery that is already there," said Dr. Razani. "It is triggering the cell to make new machinery. This results in more autophagy - the cell starts a degradation fest. Is this the only way that trehalose works to enhance autophagy by macrophages? We cannot say that for sure - we are still testing that. But is it a predominant process? Yes."
Related Links:
Washington University School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more
First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
Many cancers lack routine screening, so patients are often diagnosed only after tumors grow and spread, when options are limited. A faster, less invasive approach that broadens early detection could shift... Read more
Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more
Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more
Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more
Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
Werfen and VolitionRx Partner to Advance Diagnostic Testing for Antiphospholipid Syndrome
Antiphospholipid syndrome (APS) is a rare autoimmune disorder that causes the immune system to produce abnormal antibodies, making the blood “stickier” than normal. This condition increases the risk of... Read more