Time-Release Approach for Treating Type II Diabetes
By LabMedica International staff writers Posted on 13 Jun 2017 |

Image: A glucose-controlling drug (blue) is shown completely dissolving after 24 hours in the body of a mouse in the top two photos. In the bottom two images, a newly optimized version of a diabetes treatment forms a \"depot\" for controlled release that persists more than 24 hours (Photo courtesy of Dr. Ashutosh Chilkoti, Duke University).
A novel approach to treating type II diabetes is based on a timed-release suspension of glucagon-like peptide-1 (GLP1) embedded in a thermosensitive elastin-like polypeptide complex.
Stimulation of the GLP1 receptor (GLP1R) is a useful treatment strategy for type II diabetes. GLP1R is known to be expressed in pancreatic beta cells. Activated GLP1R stimulates the adenylyl cyclase pathway, which results in increased insulin synthesis and release of insulin. Consequently, GLP1R has been a target for developing drugs usually referred to as GLP1R agonists to treat diabetes. GLP1R is also expressed in the brain where it is involved in the control of appetite. However, the native ligand for the GLP1 receptor has a short half-life owing to enzymatic inactivation and rapid clearance.
In order to increase the half-life of GLP1, investigators at Duke University (Durham, NC, USA) developed a method that embedded GLP1 in a heat-sensitive elastin-like polypeptide (ELP) in a solution that could be injected into the skin through a standard needle. Once injected, the solution reacted with body heat to form a biodegradable gel-like deposit that slowly released the drug as it dissolved.
The investigators worked with mouse and monkey diabetes models. They reported in the June 5, 2017, online edition of the journal Nature Biomedical Engineering that a subcutaneous depot formed after a single injection of GLP1 fused to a thermosensitive elastin-like polypeptide and displayed zero-order release kinetics and circulation times of up to 10 days in mice and 17 days in monkeys. The optimized pharmacokinetics led to 10 days of glycemic control in three different mouse models of diabetes, as well as the reduction of glycosylated hemoglobin levels and weight gain in obese mice treated once weekly for eight weeks.
"Although we have pursued this method in the past, a researcher in my lab systematically worked to vary the design of the delivery biopolymer at the molecular level and found a sweet spot that maximized the duration of the drug's delivery from a single injection," said senior author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "By doing so, we managed to triple the duration of this short-acting drug for type II diabetes, outperforming other competing designs."
Related Links:
Duke University
Stimulation of the GLP1 receptor (GLP1R) is a useful treatment strategy for type II diabetes. GLP1R is known to be expressed in pancreatic beta cells. Activated GLP1R stimulates the adenylyl cyclase pathway, which results in increased insulin synthesis and release of insulin. Consequently, GLP1R has been a target for developing drugs usually referred to as GLP1R agonists to treat diabetes. GLP1R is also expressed in the brain where it is involved in the control of appetite. However, the native ligand for the GLP1 receptor has a short half-life owing to enzymatic inactivation and rapid clearance.
In order to increase the half-life of GLP1, investigators at Duke University (Durham, NC, USA) developed a method that embedded GLP1 in a heat-sensitive elastin-like polypeptide (ELP) in a solution that could be injected into the skin through a standard needle. Once injected, the solution reacted with body heat to form a biodegradable gel-like deposit that slowly released the drug as it dissolved.
The investigators worked with mouse and monkey diabetes models. They reported in the June 5, 2017, online edition of the journal Nature Biomedical Engineering that a subcutaneous depot formed after a single injection of GLP1 fused to a thermosensitive elastin-like polypeptide and displayed zero-order release kinetics and circulation times of up to 10 days in mice and 17 days in monkeys. The optimized pharmacokinetics led to 10 days of glycemic control in three different mouse models of diabetes, as well as the reduction of glycosylated hemoglobin levels and weight gain in obese mice treated once weekly for eight weeks.
"Although we have pursued this method in the past, a researcher in my lab systematically worked to vary the design of the delivery biopolymer at the molecular level and found a sweet spot that maximized the duration of the drug's delivery from a single injection," said senior author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "By doing so, we managed to triple the duration of this short-acting drug for type II diabetes, outperforming other competing designs."
Related Links:
Duke University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreMolecular Diagnostics
view channel
Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
Organ transplantation has dramatically transformed the management of patients suffering from organ failure. Yet, the immune system of the recipient often perceives the transplanted organ as a foreign entity,... Read more
Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
Pancreatic cancer ranks as the fourth-leading cause of cancer-related deaths in the United States. At present, there are no molecular tools available for the early detection of this disease.... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read morePathology
view channel
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more