New Genetic Variants Discovered in Blood Group Systems
By LabMedica International staff writers Posted on 10 Feb 2017 |

Image: Researchers discovered 1,000 new gene variants in blood group data (Photo courtesy of Fotalia).
On the surface of the red blood cells are proteins and sugar molecules, in which small differences give rise to different antigens. The ability to identify and match blood group types is important for blood transfusions, but also in pregnancy and before certain types of transplantation.
Next-generation sequencing (NGS) is rapidly moving toward routine practice for patient and donor typing and has the potential to remedy some of the limitations of currently used platforms. However, a large-scale investigation into the blood group genotypes obtained by NGS in a multiethnic cohort is lacking.
Scientists at Lund University extracted data from the 1,000 Genomes Project, which provides information on genome variation among 2,504 individuals representing 26 populations worldwide. They extracted their NGS data for all 36 blood group systems to a custom-designed database. In total, 210,412 alleles from 43 blood group–related genes were imported and curated. They developed matching algorithms to compare them to blood group variants identified to date.
The team found of the 1,241 non-synonymous variants identified in the coding regions, 241 are known blood group polymorphisms. Interestingly, 357 of the remaining 1.000 variants are predicted to occur on extracellular portions of 31 different blood group–carrying proteins and some may represent undiscovered antigens. Of the alleles analyzed, 1,504 were not previously described. The study showed that 89% of the genetic variants were previously known, but among the remaining 11% were a total of 1,000 different mutations which were absent from official catalogues of known blood group variants.
The results were exported to an online search engine, www.erythrogene.com, which presents data according to the allele nomenclature developed for clinical reporting by the International Society of Blood Transfusion. Mattias Möller, a doctoral student who developed the program, said, “Never before has there been a worldwide mapping of blood group genes in healthy individuals. Most previously known blood group variants were discovered when a blood transfusion failed, i.e. when it didn't work between the donor and the recipient. I started from the genes instead, to find variations in DNA which might give rise to a new antigen, likely to cause problems in case of transfusion, for example.” The study was published on December 27, 2016, in the journal Blood Advances.
Next-generation sequencing (NGS) is rapidly moving toward routine practice for patient and donor typing and has the potential to remedy some of the limitations of currently used platforms. However, a large-scale investigation into the blood group genotypes obtained by NGS in a multiethnic cohort is lacking.
Scientists at Lund University extracted data from the 1,000 Genomes Project, which provides information on genome variation among 2,504 individuals representing 26 populations worldwide. They extracted their NGS data for all 36 blood group systems to a custom-designed database. In total, 210,412 alleles from 43 blood group–related genes were imported and curated. They developed matching algorithms to compare them to blood group variants identified to date.
The team found of the 1,241 non-synonymous variants identified in the coding regions, 241 are known blood group polymorphisms. Interestingly, 357 of the remaining 1.000 variants are predicted to occur on extracellular portions of 31 different blood group–carrying proteins and some may represent undiscovered antigens. Of the alleles analyzed, 1,504 were not previously described. The study showed that 89% of the genetic variants were previously known, but among the remaining 11% were a total of 1,000 different mutations which were absent from official catalogues of known blood group variants.
The results were exported to an online search engine, www.erythrogene.com, which presents data according to the allele nomenclature developed for clinical reporting by the International Society of Blood Transfusion. Mattias Möller, a doctoral student who developed the program, said, “Never before has there been a worldwide mapping of blood group genes in healthy individuals. Most previously known blood group variants were discovered when a blood transfusion failed, i.e. when it didn't work between the donor and the recipient. I started from the genes instead, to find variations in DNA which might give rise to a new antigen, likely to cause problems in case of transfusion, for example.” The study was published on December 27, 2016, in the journal Blood Advances.
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more