We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Shortened p53 Protein Promotes Tumor Growth by Modulating Mitochondrial Function

By LabMedica International staff writers
Posted on 20 Dec 2016
Image: Cells that express exon 6-truncated p53 protein exhibit structural features that reflect their reprogramming away from stability and toward proliferation and metastasis. This was apparent when comparing cells that do not express the truncated form of the protein (left column) with those that do (right column). The two images at the top are composites, with blue indicating DNA (i.e., cell nuclei); and green and red corresponding, respectively, with the proteins actin and e-cadherin. In the cells reprogrammed by truncated p53 proteins, actin fibers (middle image) show stress, while the signal from e-cadherin \"glue\" drops out altogether (bottom image). These cells are much more likely to break away from tissue and travel in the body (Photo courtesy of Sordella Laboratory, Cold Spring Harbor Laboratory).
Image: Cells that express exon 6-truncated p53 protein exhibit structural features that reflect their reprogramming away from stability and toward proliferation and metastasis. This was apparent when comparing cells that do not express the truncated form of the protein (left column) with those that do (right column). The two images at the top are composites, with blue indicating DNA (i.e., cell nuclei); and green and red corresponding, respectively, with the proteins actin and e-cadherin. In the cells reprogrammed by truncated p53 proteins, actin fibers (middle image) show stress, while the signal from e-cadherin \"glue\" drops out altogether (bottom image). These cells are much more likely to break away from tissue and travel in the body (Photo courtesy of Sordella Laboratory, Cold Spring Harbor Laboratory).
A shortened version of the p53 protein - caused by a mutation in the TP53 tumor suppressor gene – has been found to promote rather than impede tumor growth.

The gene that encodes p53 is the most frequently mutated gene found in many types of cancer, and notably in most late-stage cancers. While most p53 gene mutations prevent p53 from being functional, investigators at Cold Spring Harbor Laboratory (NY, USA) discovered a variety of mutated p53 protein that actually promoted tumor growth.

The investigators reported in the October 19, 2016, online edition of the journal eLife that p53 proteins truncated after the sixth protein-coding segment (exon-6) no longer functioned as tumor suppressors but instead promoted cancer by directly altering the functions of mitochondria. The version of p53 encoded by TP53 exon-6 truncating mutations lacked roughly half of the domains of the full-length p53 protein, specifically the domains that enable full-length p53 to enter the cell nucleus and bind DNA.

TP53 exon-6 truncating mutations occurred at higher than expected frequencies and produced proteins that lacked canonical p53 tumor suppressor activities but instead promoted cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resembled the naturally occurring alternative p53 splice variant, p53-psi. Due to their similarity to p53-psi, these mutants were able to localize to the mitochondria where they promoted tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator protein, Cyclophilin D (CypD).

"Remarkably, despite 40 years of research and over 80,000 publications on p53, our new findings show that it still holds mystery and promise," said senior author Dr. Raffaella Sordella, an associate professor at Cold Springs Harbor Laboratory. "It seems that by changing mitochondrial function, the variants are priming cells to reprogram themselves. These mutations are strong candidates for targeting by precision medicine. The frequency of exon-6 truncating mutations in fact is comparable to other precision medicine targets such as the EGFR oncogenic-mutations found in lung cancer. We have begun discussing with several pharmaceutical companies ways in which we can use our newly gained knowledge to develop treatments that will make a positive difference for many cancer patients."

Related Links:
Cold Spring Harbor Laboratory


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
New
Gel Cards
DG Gel Cards
New
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more