Medical Implant Device Reduces Alzheimer’s Pathology and Provides Passive Immunization
By LabMedica International staff writers Posted on 03 Apr 2016 |

Image: Schematic representation of implant for passive immunization by long-term therapeutic antibody delivery. Cells genetically engineered to produce a therapeutic antibody are confined in a macroencapsulation “flat sheet” device and implanted in the subcutaneous tissue for in vivo antibody secretion into the bloodstream. Antibodies reaching the brain target, clear, and prevent the harmful amyloid-beta protein plaques of Alzheimer’s disease (Photo courtesy of Lathuilière A et al, 2016, and Swiss Federal Institute of Technology in Lausanne).

Image: Infographic describing the newly developed implant device that may revolutionize therapy for patients with Alzheimer’s disease (Image courtesy of Lathuilière A et al., 2016, and Swiss Federal Institute of Technology in Lausanne).
In landmark proof-of-concept study with mice, a cutting-edge subcutaneous-implant capsule developed for treatment for Alzheimer’s disease, successfully directed the immune system against the disease.
One of the hypothesized causes of Alzheimer’s is over-accumulation of the protein amyloid-beta (Abeta) in different areas of the brain, resulting in deposition of aggregated protein plaques, which are toxic to neurons. One of the most promising treatments is to tag Abeta with antibodies that signal the patient’s own immune system to attack and clear them. To be most effective, this treatment has to be given as early, before the first signs of cognitive decline. Another drawback is that this treatment requires repeated vaccine injections, which can cause side effects.
The laboratory of Patrick Aebischer at the Swiss Federal Institute of Technology in Lausanne (EPFL – École Polytechnique Fédérale de Lausanne; Switzerland) have now innovatively solved the problem. The team developed a bioactive capsule containing cells genetically engineered to produce antibodies against Abeta. The capsule is implanted in tissue under the skin and the cells release a steady and safe flow of anti-Abeta antibodies into the bloodstream, from where they cross over into the brain and target the Abeta plaques.
The “macroencapsulation device” is made of two permeable membranes sealed together with a polypropylene frame. The membranes also allow the cells to interact with surrounding tissue to get the nutrients needed. The complete device is 27-mm long, 12-mm wide, 1.2-mm thick, and contains a hydrogel that facilitates cell growth. All the materials used are biocompatible, and a method was specifically used that is easily reproducible for large-scale manufacturing.
The cells in the capsule must be able to produce antibodies, but they must not trigger a rejection response in immune system (as with organ transplants). This is where the capsule membranes come into play: they shield the cells from being identified and attacked by the immune system. This protection also enables cells from a single donor to be used on multiple patients.
In the study, the device was successful in reducing pathology when tested on a mouse model for Alzheimer’s. Treatment resulted in a dramatic reduction of Abeta plaque load, and the constant flow of antibodies produced by the capsule over a course of 39 weeks prevented the formation of Abeta plaques in the brain. The treatment also reduced phosphorylation of the protein tau, another sign of Alzheimer’s.
The work demonstrated a proof-of-concept that encapsulated cell implants can be used successfully and safely to deliver antibodies to treat Alzheimer’s disease and other neurodegenerative disorders that feature defective proteins.
The study, by Lathuilière A et al., was published March 8, 2016, in the journal Brain.
Related Links:
Swiss Federal Institute of Technology in Lausanne
One of the hypothesized causes of Alzheimer’s is over-accumulation of the protein amyloid-beta (Abeta) in different areas of the brain, resulting in deposition of aggregated protein plaques, which are toxic to neurons. One of the most promising treatments is to tag Abeta with antibodies that signal the patient’s own immune system to attack and clear them. To be most effective, this treatment has to be given as early, before the first signs of cognitive decline. Another drawback is that this treatment requires repeated vaccine injections, which can cause side effects.
The laboratory of Patrick Aebischer at the Swiss Federal Institute of Technology in Lausanne (EPFL – École Polytechnique Fédérale de Lausanne; Switzerland) have now innovatively solved the problem. The team developed a bioactive capsule containing cells genetically engineered to produce antibodies against Abeta. The capsule is implanted in tissue under the skin and the cells release a steady and safe flow of anti-Abeta antibodies into the bloodstream, from where they cross over into the brain and target the Abeta plaques.
The “macroencapsulation device” is made of two permeable membranes sealed together with a polypropylene frame. The membranes also allow the cells to interact with surrounding tissue to get the nutrients needed. The complete device is 27-mm long, 12-mm wide, 1.2-mm thick, and contains a hydrogel that facilitates cell growth. All the materials used are biocompatible, and a method was specifically used that is easily reproducible for large-scale manufacturing.
The cells in the capsule must be able to produce antibodies, but they must not trigger a rejection response in immune system (as with organ transplants). This is where the capsule membranes come into play: they shield the cells from being identified and attacked by the immune system. This protection also enables cells from a single donor to be used on multiple patients.
In the study, the device was successful in reducing pathology when tested on a mouse model for Alzheimer’s. Treatment resulted in a dramatic reduction of Abeta plaque load, and the constant flow of antibodies produced by the capsule over a course of 39 weeks prevented the formation of Abeta plaques in the brain. The treatment also reduced phosphorylation of the protein tau, another sign of Alzheimer’s.
The work demonstrated a proof-of-concept that encapsulated cell implants can be used successfully and safely to deliver antibodies to treat Alzheimer’s disease and other neurodegenerative disorders that feature defective proteins.
The study, by Lathuilière A et al., was published March 8, 2016, in the journal Brain.
Related Links:
Swiss Federal Institute of Technology in Lausanne
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreMolecular Diagnostics
view channel
Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
Organ transplantation has dramatically transformed the management of patients suffering from organ failure. Yet, the immune system of the recipient often perceives the transplanted organ as a foreign entity,... Read more
Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
Pancreatic cancer ranks as the fourth-leading cause of cancer-related deaths in the United States. At present, there are no molecular tools available for the early detection of this disease.... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read morePathology
view channel
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more