Novel Device Measures Stiffness and Stickiness in Erythrocytes
|
By LabMedica International staff writers Posted on 13 Mar 2016 |

Image: The “SCD biochip” microfluidic system for probing red blood cell (RBC) dynamic deformability and adhesion from whole sickle cell disease (SCD) patient blood samples (Photo courtesy of Case Western Reserve University).

Image
In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion, known as vaso-occlusion, in SCD patients.
Red blood cells (erythrocytes) containing normal hemoglobin are flexible and shaped like a doughnut with a thin flat area in the middle instead of a hole. This allows them to squeeze round bends in blood vessels and through smaller ones to deliver vital oxygen to tissues and organs. However, sickle hemoglobin has a tendency to form stiff rods inside the red blood cell, changing it into the crescent or sickle shape that gives the disease its name.
Scientists at Case Western Reserve University (Cleveland, OH, USA) used a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. They measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbSS) containing RBCs in blood samples obtained from 24 subjects.
The microfluidic system is composed of a Poly(methyl methacrylate) (PMMA) cover, a double sided adhesive (DSA) layer, and a glass slide base. Microfluidic channels are functionalized with fibronectin, which mimics the microvasculature wall in a closed system and can process whole blood. Adhered sickled RBCs deform in microfluidic channels in response to applied flow shear stress. By assessing the extent of stiffness and stickiness, or the "dynamic deformability and adhesion," of red blood cells, the new microfluidic device offers great potential as a way to monitor progression of sickle cell disease. Other ways to measure stiffness and stickiness in red blood cells, such as atomic force microscopy and optical tweezers do exist, but they do not lend themselves to working with whole blood in a clinical setting.
To assess dynamic deformability of red blood cells, the investigators used what they call a dynamic deformability index (DDI), which they define as "the time-dependent change of the cell's aspect ratio. Essentially, a cell's DDI is a measure of how quickly it springs back to its normal shape after experiencing flow shear stress. The team describes a range of tests where they measured the DDI of deformable and non-deformable red blood cells. They also compared adhesion of deformable and non-deformable red blood cells from blood samples taken from sickle cell patients. They tested the stickiness of the cells under different flow shear stresses, both within and outside ranges experienced in normal blood vessels.
The scientists showed that DDI of HbSS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, they observed subpopulations of HbSS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, they tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. They observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. The study was published on February 19, 2016, in the journal Technology.
Related Links:
Case Western Reserve University
Red blood cells (erythrocytes) containing normal hemoglobin are flexible and shaped like a doughnut with a thin flat area in the middle instead of a hole. This allows them to squeeze round bends in blood vessels and through smaller ones to deliver vital oxygen to tissues and organs. However, sickle hemoglobin has a tendency to form stiff rods inside the red blood cell, changing it into the crescent or sickle shape that gives the disease its name.
Scientists at Case Western Reserve University (Cleveland, OH, USA) used a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. They measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbSS) containing RBCs in blood samples obtained from 24 subjects.
The microfluidic system is composed of a Poly(methyl methacrylate) (PMMA) cover, a double sided adhesive (DSA) layer, and a glass slide base. Microfluidic channels are functionalized with fibronectin, which mimics the microvasculature wall in a closed system and can process whole blood. Adhered sickled RBCs deform in microfluidic channels in response to applied flow shear stress. By assessing the extent of stiffness and stickiness, or the "dynamic deformability and adhesion," of red blood cells, the new microfluidic device offers great potential as a way to monitor progression of sickle cell disease. Other ways to measure stiffness and stickiness in red blood cells, such as atomic force microscopy and optical tweezers do exist, but they do not lend themselves to working with whole blood in a clinical setting.
To assess dynamic deformability of red blood cells, the investigators used what they call a dynamic deformability index (DDI), which they define as "the time-dependent change of the cell's aspect ratio. Essentially, a cell's DDI is a measure of how quickly it springs back to its normal shape after experiencing flow shear stress. The team describes a range of tests where they measured the DDI of deformable and non-deformable red blood cells. They also compared adhesion of deformable and non-deformable red blood cells from blood samples taken from sickle cell patients. They tested the stickiness of the cells under different flow shear stresses, both within and outside ranges experienced in normal blood vessels.
The scientists showed that DDI of HbSS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, they observed subpopulations of HbSS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, they tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. They observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. The study was published on February 19, 2016, in the journal Technology.
Related Links:
Case Western Reserve University
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







