Super-Resolution Microscopy Improves Platelet Granule Disorder Diagnosis
|
By LabMedica International staff writers Posted on 15 Feb 2016 |

Image: Platelet granules in a blood sample stained for the marker protein CD63 visualized by Structured Illumination Microscopy (Photo courtesy of the University College London).
Platelets or thrombocytes form part of the blood, help heal wounds, and prevent bleeding by forming blood clots and they do this through tiny granules that release molecules for blood clotting.
Platelet disorders occur when these granules are too few in number, are misshapen, or do not release the right molecules; and as causes for platelet disorders vary considerably, specific treatment can be improved if diagnostic tests can distinguish the different types.
A team of scientists led by those at the University College London (UK) took blood samples were taken from three patients with Hermansky Pudlak Syndrome and seven controls. The three patients each had a defect in the Hermansky-Pudlak Syndrome 1 (HPS1) gene, HPS6 and HPS5 respectively and all the controls were healthy volunteers. Platelet-rich plasma was isolated from blood and the platelets were fixed, stained for CD63, and processed for analysis by immunofluorescence microscopy, using a Structured Illumination Microscope (SIM).
The imaging technology was custom-built by the team to automatically count the number of granules per platelet, identifying those with Hermansky-Pudlak Syndrome, a rare blood disorder thought to affect 1 in 500,000. The team distinguished the three patients with Hermansky-Pudlak Syndrome from the seven normal controls with 99% confidence. Automated counting of granules showed that those with the disorder had only one third as many granules as controls.
The authors concluded that a super-resolution imaging approach is effective and rapid in objectively differentiating between patients with a platelet bleeding disorder and healthy volunteers. CD63 is a useful marker for predicting Hermansky-Pudlak Syndrome and could be used in the diagnosis of patients suspected of other platelet granule disorders.
David Westmoreland, a doctoral student and first author of the study said, “We've found that SIM has a lot of advantages over whole mount electron microscopy as a diagnostic method. Samples don't need to be analyzed live and can be reanalyzed, and automation means analysis is unbiased and less time-consuming. Given [that] about 75% of patients with a bleeding disorder such as Hermansky-Pudlak Syndrome are initially misdiagnosed and 28% need to see between four to six specialists before receiving the correct diagnosis, there is a demand for a new method of analysis.” The study was published online on January 25, 2016, in the Journal of Thrombosis and Haemostasis.
Related Links:
University College London
Platelet disorders occur when these granules are too few in number, are misshapen, or do not release the right molecules; and as causes for platelet disorders vary considerably, specific treatment can be improved if diagnostic tests can distinguish the different types.
A team of scientists led by those at the University College London (UK) took blood samples were taken from three patients with Hermansky Pudlak Syndrome and seven controls. The three patients each had a defect in the Hermansky-Pudlak Syndrome 1 (HPS1) gene, HPS6 and HPS5 respectively and all the controls were healthy volunteers. Platelet-rich plasma was isolated from blood and the platelets were fixed, stained for CD63, and processed for analysis by immunofluorescence microscopy, using a Structured Illumination Microscope (SIM).
The imaging technology was custom-built by the team to automatically count the number of granules per platelet, identifying those with Hermansky-Pudlak Syndrome, a rare blood disorder thought to affect 1 in 500,000. The team distinguished the three patients with Hermansky-Pudlak Syndrome from the seven normal controls with 99% confidence. Automated counting of granules showed that those with the disorder had only one third as many granules as controls.
The authors concluded that a super-resolution imaging approach is effective and rapid in objectively differentiating between patients with a platelet bleeding disorder and healthy volunteers. CD63 is a useful marker for predicting Hermansky-Pudlak Syndrome and could be used in the diagnosis of patients suspected of other platelet granule disorders.
David Westmoreland, a doctoral student and first author of the study said, “We've found that SIM has a lot of advantages over whole mount electron microscopy as a diagnostic method. Samples don't need to be analyzed live and can be reanalyzed, and automation means analysis is unbiased and less time-consuming. Given [that] about 75% of patients with a bleeding disorder such as Hermansky-Pudlak Syndrome are initially misdiagnosed and 28% need to see between four to six specialists before receiving the correct diagnosis, there is a demand for a new method of analysis.” The study was published online on January 25, 2016, in the Journal of Thrombosis and Haemostasis.
Related Links:
University College London
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







