Blocking a Long Noncoding RNA Reduces Stroke Damage in Rat Model
|
By LabMedica International staff writers Posted on 29 Dec 2015 |

Image: Brain damage is outlined in red for rats that were treated to block one type of RNA (right), compared to controls (left) (Photo courtesy of Raghu Vemuganti, Suresh Mehta and TaeHee Kim, University of Wisconsin-Madison).
By preventing expression of a long noncoding RNA (lncRNA) following induced stroke in a rat model, neurosciences researchers were able to limit damage to the brain and reduce the severity of post-stroke symptoms.
Long noncoding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.
In addition to protein-coding RNAs, many classes of noncoding RNAs, including lncRNAs, undergo changes in the brain following a stroke. To better understand the roll of non-coding RNAs in stroke, investigators at the University of Wisconsin-Madison (USA) evaluated the functional significance of an lncRNA called FosDT (Fos downstream transcript) that is coded on the same chromosome as the FOS gene (FBJ murine osteosarcoma viral oncogene homolog). The FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation. In some cases, expression of the FOS gene has also been associated with apoptotic cell death.
In the current study, ischemic stroke was induced in laboratory rats by blocking an artery in the brain for one hour. Some of the animals were treated with anti-sense RNA that blocked the production of the lncRNA FosDT.
Results published in the December 16, 2015, issue of the Journal of Neuroscience revealed that stroke induced production of FOS and FosDT in the untreated animals. In the treated animals FosDT knockdown significantly ameliorated post-ischemic motor deficits and reduced the infarct volume. These effects of FosDT in part were due to its interactions with chromatin-modifying proteins Sin3a and coREST (corepressors of the transcription factor REST) and subsequent derepression of REST-downstream genes GRIA2, NFkappaB2, and GRIN1.
"Stroke influences the expression of all types of RNA, and this RNA has a broad influence throughout the cell after the blood supply is restored, in what we call reperfusion injury," said senior author Dr. Raghu Vemuganti, professor of neurological surgery at the University of Wisconsin-Madison. "A few years ago, our lab started to look at how stroke affects noncoding RNA. Two years ago, we identified about 200 types of various lncRNAs that greatly increase or decrease after stroke, and zeroed in on one that we named FosDT. We knew that the level of FosDT went up more than tenfold in the rat brain within three hours after the stroke. We thought, if we block FosDT after the stroke, would it make any difference in the amount of structural damage or behavioral disability?"
"We did not change the initial insult, caused by lack of oxygen," said Dr. Vemuganti, "but this targeted approach greatly reduced the damage after one week. We cannot completely reverse the post-stroke damage, but the total damage decreased by one-third. If we can protect this much brain tissue from stroke, that would be an enormous improvement."
Related Links:
University of Wisconsin-Madison
Long noncoding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.
In addition to protein-coding RNAs, many classes of noncoding RNAs, including lncRNAs, undergo changes in the brain following a stroke. To better understand the roll of non-coding RNAs in stroke, investigators at the University of Wisconsin-Madison (USA) evaluated the functional significance of an lncRNA called FosDT (Fos downstream transcript) that is coded on the same chromosome as the FOS gene (FBJ murine osteosarcoma viral oncogene homolog). The FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation. In some cases, expression of the FOS gene has also been associated with apoptotic cell death.
In the current study, ischemic stroke was induced in laboratory rats by blocking an artery in the brain for one hour. Some of the animals were treated with anti-sense RNA that blocked the production of the lncRNA FosDT.
Results published in the December 16, 2015, issue of the Journal of Neuroscience revealed that stroke induced production of FOS and FosDT in the untreated animals. In the treated animals FosDT knockdown significantly ameliorated post-ischemic motor deficits and reduced the infarct volume. These effects of FosDT in part were due to its interactions with chromatin-modifying proteins Sin3a and coREST (corepressors of the transcription factor REST) and subsequent derepression of REST-downstream genes GRIA2, NFkappaB2, and GRIN1.
"Stroke influences the expression of all types of RNA, and this RNA has a broad influence throughout the cell after the blood supply is restored, in what we call reperfusion injury," said senior author Dr. Raghu Vemuganti, professor of neurological surgery at the University of Wisconsin-Madison. "A few years ago, our lab started to look at how stroke affects noncoding RNA. Two years ago, we identified about 200 types of various lncRNAs that greatly increase or decrease after stroke, and zeroed in on one that we named FosDT. We knew that the level of FosDT went up more than tenfold in the rat brain within three hours after the stroke. We thought, if we block FosDT after the stroke, would it make any difference in the amount of structural damage or behavioral disability?"
"We did not change the initial insult, caused by lack of oxygen," said Dr. Vemuganti, "but this targeted approach greatly reduced the damage after one week. We cannot completely reverse the post-stroke damage, but the total damage decreased by one-third. If we can protect this much brain tissue from stroke, that would be an enormous improvement."
Related Links:
University of Wisconsin-Madison
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Pneumonia continues to be one of the leading causes of death in low- and middle-income countries, where limited access to advanced laboratory infrastructure hampers early and accurate diagnosis.... Read more
Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
Early diagnosis of Parkinson’s disease remains one of the greatest challenges in neurology. The condition, which affects nearly 12 million people globally, is typically identified only after significant... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








