LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blocking a Long Noncoding RNA Reduces Stroke Damage in Rat Model

By LabMedica International staff writers
Posted on 29 Dec 2015
Print article
Image: Brain damage is outlined in red for rats that were treated to block one type of RNA (right), compared to controls (left) (Photo courtesy of Raghu Vemuganti, Suresh Mehta and TaeHee Kim, University of Wisconsin-Madison).
Image: Brain damage is outlined in red for rats that were treated to block one type of RNA (right), compared to controls (left) (Photo courtesy of Raghu Vemuganti, Suresh Mehta and TaeHee Kim, University of Wisconsin-Madison).
By preventing expression of a long noncoding RNA (lncRNA) following induced stroke in a rat model, neurosciences researchers were able to limit damage to the brain and reduce the severity of post-stroke symptoms.

Long noncoding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.

In addition to protein-coding RNAs, many classes of noncoding RNAs, including lncRNAs, undergo changes in the brain following a stroke. To better understand the roll of non-coding RNAs in stroke, investigators at the University of Wisconsin-Madison (USA) evaluated the functional significance of an lncRNA called FosDT (Fos downstream transcript) that is coded on the same chromosome as the FOS gene (FBJ murine osteosarcoma viral oncogene homolog). The FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation. In some cases, expression of the FOS gene has also been associated with apoptotic cell death.

In the current study, ischemic stroke was induced in laboratory rats by blocking an artery in the brain for one hour. Some of the animals were treated with anti-sense RNA that blocked the production of the lncRNA FosDT.

Results published in the December 16, 2015, issue of the Journal of Neuroscience revealed that stroke induced production of FOS and FosDT in the untreated animals. In the treated animals FosDT knockdown significantly ameliorated post-ischemic motor deficits and reduced the infarct volume. These effects of FosDT in part were due to its interactions with chromatin-modifying proteins Sin3a and coREST (corepressors of the transcription factor REST) and subsequent derepression of REST-downstream genes GRIA2, NFkappaB2, and GRIN1.

"Stroke influences the expression of all types of RNA, and this RNA has a broad influence throughout the cell after the blood supply is restored, in what we call reperfusion injury," said senior author Dr. Raghu Vemuganti, professor of neurological surgery at the University of Wisconsin-Madison. "A few years ago, our lab started to look at how stroke affects noncoding RNA. Two years ago, we identified about 200 types of various lncRNAs that greatly increase or decrease after stroke, and zeroed in on one that we named FosDT. We knew that the level of FosDT went up more than tenfold in the rat brain within three hours after the stroke. We thought, if we block FosDT after the stroke, would it make any difference in the amount of structural damage or behavioral disability?"

"We did not change the initial insult, caused by lack of oxygen," said Dr. Vemuganti, "but this targeted approach greatly reduced the damage after one week. We cannot completely reverse the post-stroke damage, but the total damage decreased by one-third. If we can protect this much brain tissue from stroke, that would be an enormous improvement."

Related Links:

University of Wisconsin-Madison


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Silver Member
HPV Molecular Controls
ZeptoMetrix® HPV Type 16, 18, 45 & 68 Molecular Controls

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.