We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

SecA Inhibitors Block Growth of Methicillin-Resistant Staphylococcus aureus

By LabMedica International staff writers
Posted on 15 Dec 2015
Image: Colorized scanning electron micrograph (SEM) shows a grouping of methicillin resistant Staphylococcus aureus (MRSA) bacteria magnified 20,000 times (Photo courtesy of the CDC – US Centers for Disease Control and Prevention).
Image: Colorized scanning electron micrograph (SEM) shows a grouping of methicillin resistant Staphylococcus aureus (MRSA) bacteria magnified 20,000 times (Photo courtesy of the CDC – US Centers for Disease Control and Prevention).
A novel class of low molecular weight compounds has been shown to effectively inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA), one of the most serious drug-resistant bacterial pathogens.

Investigators at Georgia State University (Atlanta, USA) had shown previously that small molecular components of the dye Rose Bengal (RB) were active against the bacteria Escherichia coli and Bacillus subtilis. This activity was found to be due to inhibition of SecA, a cell membrane-associated subunit of the eubacterial Sec or Type II secretory pathway, a system which is responsible for the secretion of proteins through the cell membrane. Within this system SecA has the functional properties of an ATPase and is required to empower the movement of the protein substrate across the translocation channel. Thus, SecA is a key component of the general bacterial secretion system required for viability and virulence.

In the current study, which was published in the November 1, 2015, issue of the journal Bioorganic & Medicinal Chemistry, the investigators evaluated two potent RB analogs for activities against MRSA strains and for their mechanism of actions.

These analogs inhibited the ATPase activities of S. aureus SecA1 (SaSecA1) and SecA2 (SaSecA2), and inhibited the SaSecA1-dependent protein-conducting channel. Moreover, these inhibitors reduced the secretion of three toxins from S. aureus and exerted potent bacteriostatic effects against three MRSA strains.

The best inhibitor, SCA-50, showed potent concentration-dependent bactericidal activity against MRSA Mu50 strain and very importantly, two to 60-fold more potent inhibitory effect on MRSA Mu50 than all the commonly used antibiotics including vancomycin, which is considered the last resort option in treating MRSA-related infections.

Deletion or overexpression of bacterial efflux pumps had minimal effect on the antimicrobial activities against S. aureus, indicating that the effects of SecA inhibitors were not affected by the presence of these efflux pumps. This study showed that these small molecule analogs of Rose Bengal targeted SecA functions, had potent antimicrobial activities, reduced the secretion of toxins, and had the ability to overcome the effect efflux pumps, which are responsible for multi-drug resistance.

"We have found that SecA inhibitors are broad-spectrum antimicrobials and are very effective against strains of bacteria that are resistant to existing antibiotics," said contributing author Dr. Binghe Wang, professor of chemistry at Georgia State University.

Related Links:

Georgia State University


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more