LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Technology Diagnoses Stroke Quickly

By LabMedica International staff writers
Posted on 08 Dec 2015
Print article
Image: The TECAN Safire UV-VIS-IR and fluorescence microplate reader (Photo courtesy of California Institute of Technology).
Image: The TECAN Safire UV-VIS-IR and fluorescence microplate reader (Photo courtesy of California Institute of Technology).
A new approach to identifying biomarkers in blood has proven successful in helping diagnose stroke, and the technology could be expanded to diagnose such conditions as concussion, some forms of dementia, and some types of cancer and heart disease.

There is pressing need for quick and objective diagnostic technologies for both time sensitive and difficult to diagnose pathologies. Much attention has therefore focused on the identification of disease-specific peripheral biomarkers, and use of new technologies to improve antibody-based detection capabilities.

Scientists at Cornell University (Ithaca, NY, USA) and their colleagues used a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, they used oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer.

They performed in vitro, animal model, and human subject studies. They used tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients. Freshly collected plasma was diluted with water and added to individual wells of a 96-well plate preloaded with lyophilized Tethered Enzyme Technology (TET) reagent mixtures for negative, test and positive control wells in triplicates. The readout luminescence signal was integrated for 0.4 seconds, and read continuously for 25 minutes using a Safire plate reader (TECAN; Männedorf, Switzerland). For calculation of NSE levels, the linear regression slope for the initial activity was calculated per each well.

The scientists found that their data correlated very well with the current gold standard for biomarker detection, enzyme-linked immunosorbent assay (ELISA) with a major difference being that they achieved detection in 10 minutes as opposed to the several hours required for traditional ELISA. Alexander J. Travis, VMD, PhD an Associate Professor of Reproductive Biology, and lead author of the study said, “This system could be tailored to detect multiple biomarkers. That's the strength of the technique. You could assemble a microfluidic card based on this technology that could detect ten biomarkers in different wells, and the readout would be the same for each one: light. Using the same detection system for multiple different biomarkers would make for a simple system in a relatively small package.” The study was published on November 25, 2015, in the journal Public Library of Science ONE.

Cornell University 
TECAN 

Related Links:
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.