LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Detects Traumatic Brain Injury Reducing Unnecessary Imaging

By LabMedica International staff writers
Posted on 02 Jun 2015
Print article
Image: Computed tomography scan (CT) of a patient with brain trauma showing cerebral contusions, hemorrhage within the hemispheres, subdural hematoma, and skull fractures (Photo courtesy of Drs. T. Rehman, R. Ali, I. Tawil, and H. Yonas).
Image: Computed tomography scan (CT) of a patient with brain trauma showing cerebral contusions, hemorrhage within the hemispheres, subdural hematoma, and skull fractures (Photo courtesy of Drs. T. Rehman, R. Ali, I. Tawil, and H. Yonas).
A simple blood test to measure brain-specific proteins released after a person suffers a traumatic brain injury (TBI) can reliably predict both evidence of TBI on radiographic imaging and injury severity.

There is a potential benefit of adding detection of glial fibrillary acidic protein breakdown products (GFAP-BDP) to clinical screening with computed tomography (CT) and magnetic resonance imaging (MRI).

An international team of scientists led by those at University of Pittsburgh Medical Center (PA, USA) analyzed blood levels of GFAP-BDP from patients ages 16 to 93 years treated at multiple trauma centers for suspected TBI. They evaluated the ability of the blood-based biomarker to predict intracranial injury as compared to the findings on an admission CT and a delayed MRI scan. A total of 215 patients were available for analysis and approximately 73% of patients were male.

Serum samples were collected within 24 hours of injury and were dated and time stamped to compare with time of injury. Blinded sample analysis was performed in a single laboratory (Banyan Biomarkers; Alachua, FL, USA) using a sandwich enzyme-linked immunosorbent assay (ELISA) to GFAP-BDP. The GFAP ELISA utilized a proprietary mouse monoclonal antibody for solid-phase immobilization, and a proprietary polyclonal rabbit antibody for detection.

GFAP-BDP level was the most accurate predictor of the presence or absence of intracranial injury detected by radiographic imaging (accuracy, 81%), as compared with accepted clinical predictors of intracranial injury.

The authors reported a net benefit for the use of GFAP-BDP above imaging-based screening alone and a net reduction in unnecessary scans by 12% to 30%. Calculation of a cut-off value to maximize accuracy in the mild and moderate injury range specifically yielded a GFAP-BDP level of 0.6 ng/mL, with a sensitivity of 67%, a specificity of 89%, and a Brier score of 0.21. A cut-off value to maximize specificity was calculated at a GFAP-BDP concentration of 1.66 ng/mL, resulting in a sensitivity of 45%, specificity of 99%, and a Brier score of 0.29.

John T. Povlishock, PhD, a professor at Virginia Commonwealth University (Richmond, VA, USA) said, “Importantly, this study significantly expands upon other studies that speak to the usefulness of GFAP and, specifically, serum-derived GFAP-BDP in identifying those traumatically brain injured patients whose clinical course is complicated by intracranial injury, demonstrating that GFAP-BDP offers good predictive ability, significant discrimination of injury severity, and net benefit in reducing the need for unnecessary scans, all of which have significant implications for the brain-injured patient.” The study was published on April 7, 2015, in the Journal of Neurotrauma.

Related Links:

University of Pittsburgh Medical Center 
Banyan Biomarkers 
Virginia Commonwealth University 


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.