We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Chromosome Buffers Improve Understanding of Melanoma

By LabMedica International staff writers
Posted on 01 Oct 2014
Print article
Image: Telomeres at the end of the chromosomes protecting against DNA deterioration (Photo courtesy of Dr. Daniel Friedland MD).
Image: Telomeres at the end of the chromosomes protecting against DNA deterioration (Photo courtesy of Dr. Daniel Friedland MD).
Buffers that guard against damage to the ends of chromosomes could hold the key to a better understanding of malignant melanoma, the deadliest form of skin cancer.

The ends of chromosomes are protected from instability by tandem nucleotide repeats, known as telomeres and these telomeres shorten both with age and following exposures associated with cancer risk, such as smoking and ultraviolet (UV) irradiation.

An international team of scientists led by those at the University of Leeds (UK) investigated variants identified by the telomere meta-analysis in a genome-wide association study (GWAS) of melanoma. The study consisted of 11,108 case patients and 13,933 control patients from Europe, Israel, the USA, and Australia. The scientists concentrated on seven single nucleotide polymorphisms (SNPs) from the telomere meta-analysis.

In phase 1, samples were genotyped on the HumanHap300 BeadChip version 2 duo array with 317k tagging SNPs (Illumina; San Diego, CA, USA) and in France, cases were genotyped on the Illumina HumanCNV370k array. The phase 2 samples were genotyped on the Illumina 610k array.

The team created a score representing genetically-determined telomere length based on all the established telomere associated genes and found that this score was associated with melanoma risk. The one in four people predicted to have the longest telomeres are at 30% increased risk of developing melanoma compared to those one in four predicted to have the shortest telomeres.

Mark M. Iles, PhD, the led author of the study said, “For the first time, we have established that the genes controlling the length of these telomeres play a part in the risk of developing melanoma. More studies are needed to better understand the relationship between melanoma and telomeres, but learning more about how an individual's genetic telomere profile influences their risk developing melanoma may help us. It will improve our understanding of melanoma biology and gives us a target towards developing potential treatments as well as potentially helping shape advice on what behavioral changes people might make.” The study was published in the October 2014 issue of the Journal of the National Cancer Institute.

Related Links:
.
University of Leeds 
Illumina 


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.