We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Optical Interferometry Assays Stored Erythrocyte Function

By LabMedica International staff writers
Posted on 16 Sep 2014
Print article
Image: The topography of a red blood cell as measured by the spatial light interference microscope (SLIM) optical technique. Though the cell keeps its shape as it ages, the membrane becomes less flexible (Photo courtesy of Prof. Gabriel Popescu).
Image: The topography of a red blood cell as measured by the spatial light interference microscope (SLIM) optical technique. Though the cell keeps its shape as it ages, the membrane becomes less flexible (Photo courtesy of Prof. Gabriel Popescu).
The effect of the storage on the erythrocyte membrane deformability and morphology has been investigated using optical interferometry which can image red blood cell (RBC) topography with nanometer sensitivity.

Stored red blood cells or erythrocytes undergo numerous biochemical, structural, and functional changes, commonly referred to as storage lesion and these changes can impede the ability of erythrocytes to perform their function and, as result, impact clinical outcomes in transfusion patients.

Scientists and engineers at the University of Illinois at Urbana-Champaign (Urbana, IL, USA) used as source for RBC samples, packed red cells from donors collected in anticoagulant and preservation solution through the apheresis technique. The samples, two O+ and two A+, were obtained from saved segments of blood tube which is routinely attached to the blood unit in blood banks and maintained at 4 °C for the entire measurement period.

A sample chamber was created by punching a hole in a double sided scotch tape and sticking one side of the tape onto a poly-l-lysine coated cover slip (Neuvitro; El Monte, CA, USA). The sample is then pipetted into the chamber created by the hole and is sealed on the top using another cover slip. RBCs are allowed to settle for 45 minutes on the poly-l-lysine coated cover slip in order to avoid any cell movement prior to fast RBC imaging. A spatial light interference microscope (SLIM) was used where the optical layout is essentially a 4f-telecentric system. The SLIM was designed as an add-on module to a commercial phase contrast microscope the Axio Observer Z1 (Carl Zeiss Microscopy GmbH, Jena, Germany). Fast phase images were continuously recorded at 10 frames per second.

The team discovered that their measurements revealed a lot of characteristics stay the same over time as the cells retain their shape, mass and hemoglobin content. However, the membranes become stiffer and less elastic as time goes by. This is important because the blood cells need to be flexible enough to travel through tiny capillaries and permeable enough for oxygen to pass through. Increased stiffness in stored discocytes may be associated with reduction in post-transfusion survival and accelerate removal of transfused cells from the circulation. Availability of this dynamic membrane function assay may allow optimization of storage solution for RBCs with the objective of not only maintaining a normal RBC morphology but also normal membrane functionality.

Krishna Tangella, MD, a professor of pathology and a coauthor of the study said, “The results of this study can have a wide variety of clinical applications. Functional data from red blood cells would help physicians determine when to give red-cell transfusions for patients with anemia. This study may help better utilization of red-cell transfusions, which will not only decrease healthcare costs but also increase the quality of care.” The study was published on September 5, 2014, in the journal Scientific Reports.

Related Links:

University of Illinois at Urbana-Champaign
Neuvitro
Carl Zeiss Microscopy 


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.