We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

PCR-RFLP Distinguishes Between Co-Endemic New World Leishmania Species

By LabMedica International staff writers
Posted on 08 Sep 2014
Print article
Image: Map of Mexico with Leishmania endemic regions studied shown in maroon coloring – from left to right the states: Veracruz, Tabasco, Campeche, and Quintana Roo (Photo courtesy of Prof. Monroy-Ostria A. et al., the Instituto Politecnico Nacional, and the journal Interdisciplinary Perspectives on Infectious Diseases).
Image: Map of Mexico with Leishmania endemic regions studied shown in maroon coloring – from left to right the states: Veracruz, Tabasco, Campeche, and Quintana Roo (Photo courtesy of Prof. Monroy-Ostria A. et al., the Instituto Politecnico Nacional, and the journal Interdisciplinary Perspectives on Infectious Diseases).
In a study of clinical samples from patients in southeast Mexico, a PCR-RFLP assay was effective in differentiating between co-endemic species of Leishmania—enabling more fine-tuned diagnoses and more appropriate treatments for patients in a given population with different forms of American (New World) leishmaniasis.

American cutaneous leishmaniasis (CL) includes: localized CL (LCL) caused by L. (L.) mexicana; diffuse CL (DCL) caused by L. (L.) amazonensis, Leishmania (L.) venezuelensis, and Leishmania (L.) pifanoi; and mucosal CL (MCL) caused by members of the L. braziliensis complex. In endemic regions, multiple species of Leishmania may coexist. Identification of the infecting species based on clinical symptoms is difficult, especially since several species can cause both LCL and MCL. Diagnostic confirmation and correct identification are important for appropriate species-specific therapeutics as well as epidemiologic studies.

In an international collaboration led by Amalia Monroy-Ostria, professor at the Escuela Nacional de Ciencias Biológicas of the Instituto Politecnico Nacional (IPN; Mexico City, Mexico), a PCR-RFLP (restriction fragment length polymorphism) assay based on the conserved ITS1 (internal transcribed spacer 1) genes was evaluated for direct diagnosis of leishmaniasis and identification of parasite species that, to small but significant extent, coexist in Leishmania-endemic regions of southeast Mexico. Most clinical samples examined, 109/116 (94%), gave patterns similar to L. mexicana, 2 gave patterns similar to L. braziliensis, and 5 gave patterns that suggest a co-infection of 2 strains: co-infection of L. (L.) mexicana and L. (V.) braziliensis or of L. (L.) mexicana and L. (L.) amazonensis. Of 21 Leishmania isolates, 52% displayed a pattern similar to the L. (L.) mexicana strain, 5% showed a mixed pattern compatible with L. (L.) mexicana and L. (V.) braziliensis, 8 with L. (L.) amazonensis and L. (L.) mexicana, and 1 to L. (V.) braziliensis.

The ITS1 PCR-RFLP assay enables diagnosis of leishmaniasis directly (without need for parasite isolation from clinical samples) and simultaneous determination of most infecting species of New World Leishmania, in relatively short time and low cost. Improvements can be made, for example, by further tailoring to sequences that may be found to more specifically characterize local Leishmania species for a given region (e.g., with respect to gene sequences amplified in the PCR or to restriction enzymes used for the RFLP).

The study, by Monroy-Ostria A. et al., was published in the journal Interdisciplinary Perspectives on Infectious Diseases, July 2014.

Related Links:

Instituto Politecnico Nacional


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.