LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic and Lifestyle Factors Effect Biomarker Variation

By LabMedica International staff writers
Posted on 01 Sep 2014
Print article
Fluidigm\'s Biomark HD real-time polymerase chain reaction platform
The Biomark HD real-time polymerase chain reaction platform (Photo courtesy of Fluidigm)
Ideal biomarkers used for disease diagnosis should display deviating levels in affected individuals only and be robust to factors unrelated to the disease.

A detailed understanding of potential confounding factors and their effect size is therefore a necessary prerequisite in the evaluation of the rapidly growing number of candidate biomarkers.

Scientists at the Uppsala University (Sweden) analyzed 92 potential protein biomarkers for cancer and inflammation in plasma from 1,005 individuals in a longitudinal cross-sectional population-based study. The biomarkers analyzed constituted an exploration panel directed against multiple cancers and also contain proteins implicated in autoimmune diseases such as rheumatoid arthritis (RA) and Graves’ disease.

For the proximity extension assay protein levels in plasma were analyzed using the Proseek Multiplex Oncology I 96 × 96 kit (Olink Bioscience; Uppsala, Sweden) and quantified by real-time polymerase chain reaction (PCR) using the BioMark HD) real-time PCR platform (Fluidigm; South San Francisco, CA, USA). The team selected 100 individuals, for Whole-Exome Sequencing using the SureSelect system for exome capture (Agilent; Santa Clara, CA, USA) and the SOLiD 5500xl instrumentation for sequencing (Applied Biosystems; Foster City, CA, USA).

The scientists found that for 75% of the biomarkers, the levels are significantly heritable and genome-wide association studies identified 16 novel loci and replicate two previously known loci with strong effects on one or several of the biomarkers. Integrative analysis attributes as much as 56.3% of the observed variance to non-disease factors. They proposed that information on the biomarker-specific profile of major genetic, clinical and lifestyle factors should be used to establish personalized clinical cutoffs, and that this would increase the sensitivity of using biomarkers for prediction of clinical end points.

Stefan Enroth, PhD, the lead author of the study, said, “These results are important, as they show which variables are significant for variations in the measurable values. If these factors are known, we have a greater possibility of seeing variations and we get clearer breakpoints between elevated values and normal values. By extension this may lead to the possibility of using more biomarkers clinically.” The study was published on August 22, 2014, in the journal Nature Communications.

Related Links:

Uppsala University
Olink Bioscience 
Fluidigm 


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.