We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Simple New Method Identifies Food Allergies

By LabMedica International staff writers
Posted on 14 Jul 2014
Image: The 7100 Capillary Electrophoresis system (Photo courtesy of Agilent).
Image: The 7100 Capillary Electrophoresis system (Photo courtesy of Agilent).
A highly-sensitive method has been developed that can quickly and accurately identify proteins that cause allergic reactions even at very low concentrations.

Food allergies occur when the body's immune system mistakes a harmless food protein for a threat and attacks it as it would normally do with a bacterium or a virus and this causes symptoms like swelling, rashes, pain, and even life-threatening anaphylactic shocks.

Scientists at the Ecole Polytechnique Fédérale de Lausanne (Switzerland) developed a highly-sensitive method that uses a patient's immunoglobulin E (IgE) to determine specifically which protein induces allergic responses in them. The method uses a well-established technique called immunoaffinity capillary electrophoresis (IACE). First, IgE antibodies from the patient's blood are isolated by interaction with magnetic beads that are coated with a different type of antibody.

Blood serum of a patient allergic to the cow’s milk and control serum from a blood donor who had no allergies was tested. First, IgE antibodies from the patient's blood are isolated by interaction with magnetic beads that are coated with a different type of antibody. The antibody coated bead recognizes and binds to the patient's IgE antibodies. This takes place inside a long and narrow glass tube called a capillary. The bound antibodies are then flushed out of the capillary which are powerfully attached to the magnetic beads through a process called crosslinking, and this keeps them from detaching. The beads with the patient's IgE are then placed again inside the capillary.

The IACE-UV investigations for total IgE analysis was carried out with a 7100A Capillary Electrophoresis (CE) apparatus (Agilent; Waldbronn, Germany). Component-resolved diagnostics (CRD) were performed using the IACE with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-TOF-MS, Microflex instrument (Bruker Daltonics; Bremen, Germany). The method offers a personalized way to identify the exact proteins that can cause food allergies to a patient, which can help develop an effective treatment.

The authors concluded that their method was quicker that the laborious and resource-intensive diagnostic methods used currently as it does not require the detection and quantification of a patient's specific IgE antibodies. The methodology provides higher accuracy than conventional allergy-testing methods, as it can detect tiny amounts of allergic proteins, even if they are unexpected and rare. This also means that the method can be extended beyond milk to other foods like nuts and wheat products. The study was published on June 10, 2014, in the journal Analytical Chemistry.

Related Links:

Ecole Polytechnique Fédérale de Lausanne
Agilent 
Bruker Daltonics 


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more