Tumors Benefit from Molecular Switch That Blocks T-cell Interferon Production
|
By LabMedica International staff writers Posted on 26 Jun 2013 |
A molecular switch causes immune system T-cells to convert from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, a change that inhibits the production of the inflammatory cytokine interferon gamma.
The move from OXPHOS to aerobic glycolysis is a hallmark of T-cell activation and was thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells would adopt this less efficient way to produce energy, especially in an oxygen-rich environment, has been a mystery.
Investigators at the Washington University School of Medicine (St. Louis, MO, USA) studied the role of the known molecular switch GAPDH glyceraldehyde 3-phosphate dehydrogenase) in the conversion of T-cells from OXPHOS to aerobic glycolysis.
GAPDH is an enzyme of approximately 37 kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. As its name indicates, GAPDH catalyzes the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate. This conversion occurs in the cytosol of the cell in two coupled steps. The first is favorable and allows the second unfavorable step to occur. In addition to this long established metabolic function, GAPDH has recently been implicated in several nonmetabolic processes, including transcription activation, initiation of apoptosis, and ER to Golgi vesicle shuttling.
The investigators reported in the June 6, 2013, issue of the journal Cell that aerobic glycolysis was specifically required for effector function in T-cells but that this pathway was not necessary for proliferation or survival. When activated T-cells were provided with co-stimulation and growth factors but were blocked from engaging glycolysis, their ability to produce interferon gamma was markedly compromised. This defect was translational and was regulated by the binding of GAPDH to interferon gamma mRNA.
"The proteins involved in glycolysis do not just disappear when glycolysis is turned off—they are pretty stable proteins, so they can hang around in the cell and participate in other processes," said senior author Dr. Erika Pearce, assistant professor of pathology and immunology at the Washington University School of Medicine. "In T-cells this can be a problem since one of these proteins, GAPDH, can inhibit the production of interferon gamma. It is like an on-off switch, and all we need to do to flip it is change the availability of sugar. T-cells often can go everywhere—tumors, inflammation, infections—but sometimes they do not do anything. If we can confirm that this same switch is involved in these failures in the body, we might be able to find a way to put the fight back into those T-cells."
"T-cells can get into tumors, but unfortunately they are often ineffective at killing the cancer cells," said Dr. Pearce. "Lack of the ability to make interferon gamma could be one reason why they fail to kill tumors. By understanding more about how sugar metabolism affects interferon production, we may be able to develop treatments that fight tumors by enhancing T-cell function."
Related Links:
Washington University School of Medicine
The move from OXPHOS to aerobic glycolysis is a hallmark of T-cell activation and was thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells would adopt this less efficient way to produce energy, especially in an oxygen-rich environment, has been a mystery.
Investigators at the Washington University School of Medicine (St. Louis, MO, USA) studied the role of the known molecular switch GAPDH glyceraldehyde 3-phosphate dehydrogenase) in the conversion of T-cells from OXPHOS to aerobic glycolysis.
GAPDH is an enzyme of approximately 37 kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. As its name indicates, GAPDH catalyzes the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate. This conversion occurs in the cytosol of the cell in two coupled steps. The first is favorable and allows the second unfavorable step to occur. In addition to this long established metabolic function, GAPDH has recently been implicated in several nonmetabolic processes, including transcription activation, initiation of apoptosis, and ER to Golgi vesicle shuttling.
The investigators reported in the June 6, 2013, issue of the journal Cell that aerobic glycolysis was specifically required for effector function in T-cells but that this pathway was not necessary for proliferation or survival. When activated T-cells were provided with co-stimulation and growth factors but were blocked from engaging glycolysis, their ability to produce interferon gamma was markedly compromised. This defect was translational and was regulated by the binding of GAPDH to interferon gamma mRNA.
"The proteins involved in glycolysis do not just disappear when glycolysis is turned off—they are pretty stable proteins, so they can hang around in the cell and participate in other processes," said senior author Dr. Erika Pearce, assistant professor of pathology and immunology at the Washington University School of Medicine. "In T-cells this can be a problem since one of these proteins, GAPDH, can inhibit the production of interferon gamma. It is like an on-off switch, and all we need to do to flip it is change the availability of sugar. T-cells often can go everywhere—tumors, inflammation, infections—but sometimes they do not do anything. If we can confirm that this same switch is involved in these failures in the body, we might be able to find a way to put the fight back into those T-cells."
"T-cells can get into tumors, but unfortunately they are often ineffective at killing the cancer cells," said Dr. Pearce. "Lack of the ability to make interferon gamma could be one reason why they fail to kill tumors. By understanding more about how sugar metabolism affects interferon production, we may be able to develop treatments that fight tumors by enhancing T-cell function."
Related Links:
Washington University School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read more
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








