Replenishment of GDF11 Reverses Cardiac Hypertrophy in Aging Animals
|
By LabMedica International staff writers Posted on 22 May 2013 |

Image: Senior author Dr. Richard Lee (left) with contributing author Dr. Amy J. Wagers (right) (Photo courtesy of Harvard University).
Experimental data collected by a team of cardiovascular disease researchers identified the decline in levels of the blood-borne protein growth differentiation factor 11 (GDF11) as contributing to deterioration of the heart muscle (cardiac hypertrophy) that occurs with advanced age and showed that restoration of GDF11 could reverse this process.
Investigators at Harvard University (Boston, MA, USA) searched for factors leading to the development of cardiac hypertrophy by using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation.
The circulatory systems of old and young mice were surgically joined. After four weeks of exposure to the circulation of young mice, indicators of cardiac hypertrophy in old mice dramatically regressed. Changes included reduced cardiomyocyte size and molecular remodeling. This reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of the parabiosis procedure, implicating a blood-borne factor.
The investigators used modified aptamer-based proteomics to identify the TGF-beta superfamily member GDF11 as a circulating factor in young mice that declined with age. Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.
GDF11 is a member of the bone morphogenetic protein (BMP) family and the TGF-beta (transforming growth factor beta) superfamily. This group of proteins is characterized by a polybasic proteolytic processing site, which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in animals suggest that this protein is involved in mesodermal formation and neurogenesis during embryonic development.
Results published in the May 9, 2013, online edition of the journal Cell revealed that treatment of old mice that restored GDF11 to youthful levels replicated the effects of parabiosis by reversing age-related hypertrophy, a finding that implies a possible therapeutic use for this protein in geriatric medicine.
"There has been evidence that circulating bloodstream factors exist in mammals that can rejuvenate tissues, but they have not been identified. This study found the first factor like this," said senior study author Dr. Richard Lee, professor of medicine at Harvard University.
Related Links:
Harvard University
Investigators at Harvard University (Boston, MA, USA) searched for factors leading to the development of cardiac hypertrophy by using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation.
The circulatory systems of old and young mice were surgically joined. After four weeks of exposure to the circulation of young mice, indicators of cardiac hypertrophy in old mice dramatically regressed. Changes included reduced cardiomyocyte size and molecular remodeling. This reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of the parabiosis procedure, implicating a blood-borne factor.
The investigators used modified aptamer-based proteomics to identify the TGF-beta superfamily member GDF11 as a circulating factor in young mice that declined with age. Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.
GDF11 is a member of the bone morphogenetic protein (BMP) family and the TGF-beta (transforming growth factor beta) superfamily. This group of proteins is characterized by a polybasic proteolytic processing site, which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in animals suggest that this protein is involved in mesodermal formation and neurogenesis during embryonic development.
Results published in the May 9, 2013, online edition of the journal Cell revealed that treatment of old mice that restored GDF11 to youthful levels replicated the effects of parabiosis by reversing age-related hypertrophy, a finding that implies a possible therapeutic use for this protein in geriatric medicine.
"There has been evidence that circulating bloodstream factors exist in mammals that can rejuvenate tissues, but they have not been identified. This study found the first factor like this," said senior study author Dr. Richard Lee, professor of medicine at Harvard University.
Related Links:
Harvard University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Blood Metabolite Signature Test Better Predicts Type 2 Diabetes Risk
Type 2 diabetes is rising worldwide and now accounts for more than 90% of all diabetes cases, driven by impaired insulin response and long-term metabolic dysfunction. The disease often develops silently... Read more
Genetic Test Could Detect Predisposition to Pancreatic Cancer
Pancreatic ductal adenocarcinoma is one of the deadliest cancers, largely because it is usually diagnosed at an advanced stage when treatment options are limited. The lack of effective population screening... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channel
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read more
New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
Antibiotic resistance is rising worldwide, threatening the effectiveness of treatments for major infectious diseases, including tuberculosis (TB). Resistance to key TB drugs, such as bedaquiline, is of... Read morePathology
view channel
Intraoperative Tumor Histology to Improve Cancer Surgeries
Surgical removal of cancer remains the first-line treatment for many tumors, but ensuring that all cancerous tissue is removed while preserving healthy tissue is a major challenge. Surgeons currently rely... Read more
Rapid Stool Test Could Help Pinpoint IBD Diagnosis
Inflammatory bowel disease (IBD) is a chronic condition in which the immune system mistakenly attacks the digestive tract, causing persistent gut inflammation. Diagnosis and disease monitoring often depend... Read more
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







