Replenishment of GDF11 Reverses Cardiac Hypertrophy in Aging Animals
|
By LabMedica International staff writers Posted on 22 May 2013 |

Image: Senior author Dr. Richard Lee (left) with contributing author Dr. Amy J. Wagers (right) (Photo courtesy of Harvard University).
Experimental data collected by a team of cardiovascular disease researchers identified the decline in levels of the blood-borne protein growth differentiation factor 11 (GDF11) as contributing to deterioration of the heart muscle (cardiac hypertrophy) that occurs with advanced age and showed that restoration of GDF11 could reverse this process.
Investigators at Harvard University (Boston, MA, USA) searched for factors leading to the development of cardiac hypertrophy by using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation.
The circulatory systems of old and young mice were surgically joined. After four weeks of exposure to the circulation of young mice, indicators of cardiac hypertrophy in old mice dramatically regressed. Changes included reduced cardiomyocyte size and molecular remodeling. This reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of the parabiosis procedure, implicating a blood-borne factor.
The investigators used modified aptamer-based proteomics to identify the TGF-beta superfamily member GDF11 as a circulating factor in young mice that declined with age. Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.
GDF11 is a member of the bone morphogenetic protein (BMP) family and the TGF-beta (transforming growth factor beta) superfamily. This group of proteins is characterized by a polybasic proteolytic processing site, which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in animals suggest that this protein is involved in mesodermal formation and neurogenesis during embryonic development.
Results published in the May 9, 2013, online edition of the journal Cell revealed that treatment of old mice that restored GDF11 to youthful levels replicated the effects of parabiosis by reversing age-related hypertrophy, a finding that implies a possible therapeutic use for this protein in geriatric medicine.
"There has been evidence that circulating bloodstream factors exist in mammals that can rejuvenate tissues, but they have not been identified. This study found the first factor like this," said senior study author Dr. Richard Lee, professor of medicine at Harvard University.
Related Links:
Harvard University
Investigators at Harvard University (Boston, MA, USA) searched for factors leading to the development of cardiac hypertrophy by using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation.
The circulatory systems of old and young mice were surgically joined. After four weeks of exposure to the circulation of young mice, indicators of cardiac hypertrophy in old mice dramatically regressed. Changes included reduced cardiomyocyte size and molecular remodeling. This reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of the parabiosis procedure, implicating a blood-borne factor.
The investigators used modified aptamer-based proteomics to identify the TGF-beta superfamily member GDF11 as a circulating factor in young mice that declined with age. Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.
GDF11 is a member of the bone morphogenetic protein (BMP) family and the TGF-beta (transforming growth factor beta) superfamily. This group of proteins is characterized by a polybasic proteolytic processing site, which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in animals suggest that this protein is involved in mesodermal formation and neurogenesis during embryonic development.
Results published in the May 9, 2013, online edition of the journal Cell revealed that treatment of old mice that restored GDF11 to youthful levels replicated the effects of parabiosis by reversing age-related hypertrophy, a finding that implies a possible therapeutic use for this protein in geriatric medicine.
"There has been evidence that circulating bloodstream factors exist in mammals that can rejuvenate tissues, but they have not been identified. This study found the first factor like this," said senior study author Dr. Richard Lee, professor of medicine at Harvard University.
Related Links:
Harvard University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreMolecular Diagnostics
view channel
Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more
Sample Prep Instrument to Empower Decentralized PCR Testing for Tuberculosis
Tuberculosis remains the deadliest infectious disease worldwide despite being both treatable and curable when diagnosed early. A major barrier to timely diagnosis is that PCR-based TB testing is still... Read more
Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more
World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read more
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







