We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo
Medica 2025
Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Replenishment of GDF11 Reverses Cardiac Hypertrophy in Aging Animals

By LabMedica International staff writers
Posted on 22 May 2013
Image: Senior author Dr. Richard Lee (left) with contributing author Dr. Amy J. Wagers (right) (Photo courtesy of Harvard University).
Image: Senior author Dr. Richard Lee (left) with contributing author Dr. Amy J. Wagers (right) (Photo courtesy of Harvard University).
Experimental data collected by a team of cardiovascular disease researchers identified the decline in levels of the blood-borne protein growth differentiation factor 11 (GDF11) as contributing to deterioration of the heart muscle (cardiac hypertrophy) that occurs with advanced age and showed that restoration of GDF11 could reverse this process.

Investigators at Harvard University (Boston, MA, USA) searched for factors leading to the development of cardiac hypertrophy by using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation.

The circulatory systems of old and young mice were surgically joined. After four weeks of exposure to the circulation of young mice, indicators of cardiac hypertrophy in old mice dramatically regressed. Changes included reduced cardiomyocyte size and molecular remodeling. This reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of the parabiosis procedure, implicating a blood-borne factor.

The investigators used modified aptamer-based proteomics to identify the TGF-beta superfamily member GDF11 as a circulating factor in young mice that declined with age. Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.

GDF11 is a member of the bone morphogenetic protein (BMP) family and the TGF-beta (transforming growth factor beta) superfamily. This group of proteins is characterized by a polybasic proteolytic processing site, which is cleaved to produce a mature protein containing seven conserved cysteine residues. The members of this family are regulators of cell growth and differentiation in both embryonic and adult tissues. Studies in animals suggest that this protein is involved in mesodermal formation and neurogenesis during embryonic development.

Results published in the May 9, 2013, online edition of the journal Cell revealed that treatment of old mice that restored GDF11 to youthful levels replicated the effects of parabiosis by reversing age-related hypertrophy, a finding that implies a possible therapeutic use for this protein in geriatric medicine.

"There has been evidence that circulating bloodstream factors exist in mammals that can rejuvenate tissues, but they have not been identified. This study found the first factor like this," said senior study author Dr. Richard Lee, professor of medicine at Harvard University.

Related Links:

Harvard University


Gold Member
Hematology Analyzer
Medonic M32B
Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gold Member
Hybrid Pipette
SWITCH

Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
GLOBE SCIENTIFIC, LLC