LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lab-on-a-Chip Promises Biochemical Diagnostics

By LabMedica International staff writers
Posted on 06 Mar 2013
Print article
Lab-on-a-chip technologies are attractive as they require fewer reagents, have lower detection limits, allow for parallel analyses, and can have a smaller footprint.

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, and high-throughput screening.

Scientists at the University of Illinois (Urbana, IL USA) used microfabrication techniques and incorporated a unique design of transistor-based heating, for further advancing the use of silicon transistor and electronics into chemistry and biology for point-of-care diagnostics.

The approach performs localized heating of individual subnanoliter droplets that can allow for new applications that require parallel, time-and space-multiplex reactions on a single integrated circuit. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products.

By using microfabrication techniques and incorporating the unique design of transistor-based heating with individual reaction volumes, “laboratory-on-a-chip” technologies can be scaled down to “laboratory-on-a-transistor” technologies as sensor/heater hybrids that could be used for point-of-care diagnostics.

Rashid Bashir, PhD, a professor at the University of Illinois said, “We have demonstrated that single stranded DNA (ssDNA) probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules. Notably, our miniaturized heater could also function as dual heater/sensor elements, as these silicon-on-insulator nanowire or nanoribbon structures have been used to detect DNA, proteins, pH, and pyrophosphates.”

The authors concluded that the technique they described to heat subnanoliter droplets-in-air for visualization of DNA denaturation with resolution down to single base mismatches has application to current DNA microarray technologies. The study was published on February 11, 2013, in the journal Proceedings of the National Academy of Science of the United States of America (PNAS).

Related Links:

University of Illinois


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.